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Abstract: From existing databases, we compiled and evaluated 604 total mercury (Hg) levels in the eggs and

blood of 17 species of marine foraging birds from 35 Gulf of Maine islands to provide baseline data and to

determine the best tissue, age class, and species for future biomonitoring. While mean Hg levels in most species

did not exceed adverse effects thresholds, levels in some individual eggs did; for all species arithmetic mean egg

Hg levels ranged from 0.04 to 0.62 (lg/g, wet weight). Piscivorous birds had higher Hg levels than invertivores.

Leach’s storm-petrel (Oceanodroma leucorhoa), razorbill (Alca torda), and black guillemot (Cepphus grylle)

adult blood and egg Hg levels were higher than other species. Our results indicate that adult blood is preferable

to chick blood for detecting long-term temporal trends because adult levels are higher and not confounded by

metabolic effects. However, since we found that eggs and adult blood are comparable indicators of methyl-

mercury bioavailability, we determined that eggs are the preferred tissue for long-term Hg monitoring because

the relative ease in collecting eggs ensures consistent and robust datasets. We suggest specific sampling

methods, and based on our results demonstrate that common eider (Somateria mollissima), Leach’s storm-

petrel, double-crested cormorant, and black guillemot are the most effective bioindicators of Hg of the Gulf of

Maine.
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INTRODUCTION

Although mercury (Hg) is a naturally occurring element

(Nriagu and Pacyna 1988; Nriagu 1989), anthropogenic

mercury levels in the North Atlantic have increased over

the last 100 years (Slemr and Langer 1992; Asmund and

Nielsen 2000; Mason and Sheu 2002) and in Maine have

increased since 1970 (Perry et al. 2005). This increase is

attributed generally to anthropogenic input (Lockhart et al.

1998; Mason and Sheu 2002). The historical increase has

been reflected in tissues from seabirds in the North Atlantic

(Appelquist et al. 1985; Thompson et al. 1992, 1998;

Monteiro and Furness 1997), Canadian Arctic (Braune

2007), and within the Gulf of Maine watershed (Evers et al.

1998, 2005). This increase in global Hg levels since the

1900s is of concern because Hg is a persistent toxic heavy

metal that bioaccumulates, is biomagnified in wildlife, and

has negative neurological and reproductive impacts

(Scheuhammer et al. 2007; Wolfe et al. 2007).

Studies on seabirds in many parts of the world have

found Hg levels thought to be elevated above background

levels, specifically in Antarctica (Norheim et al. 1982), North

America (Pearce et al. 1979; Braune et al. 2001), Europe

(Furness et al. 1995), Russia (Stout et al. 2002), Asia (Kim

et al. 1996), and the North Pacific (Burger and Gochfeld

2000). Moreover, researchers have found these elevated Hg

levels in species with diverse foraging strategies (Elliott et al.

1992; Thompson et al. 1992, Burger and Gochfeld 2000).

Birds are used frequently as bioindicators to evaluate

where and to what extent Hg is bioavailable (Scheuhammer

1987; Wolfe et al. 1998, 2007; Evers et al. 2005; Scheuham-

mer et al. 2007). Past studies in eastern Canada found dif-

ferences in Hg levels in the eggs of several seabird species

(Pearce et al. 1979). While there has been a significant effort

to characterize Hg levels in seabirds in North America, no

studies have sampled marine foraging birds broadly and

concurrently at multiple sites in the Gulf of Maine—a region

that has been identified to have some of the highest Hg levels

in North America (Evers and Clair 2005). Therefore, bird

researchers in the Gulf of Maine formed the Gulf of Maine

Seabird Contaminant Assessment Network (GOMSCAN) to

share existing waterbird Hg data. GOMSCAN is led by

BioDiversity Research Institute and is composed of the

Canadian Wildlife Service, Kent Island Bowdoin Scientific

Station, Maine Coastal Islands National Wildlife Refuge,

Maine Department of Inland Fisheries and Wildlife,

National Audubon Society, Shoals Marine Laboratory of

Cornell University, University of New Brunswick, University

of New Hampshire, and U.S. Fish and Wildlife Service.

GOMSCAN’s goals are to identify species, locations, and

trophic levels where Hg is concentrating, and to refine

sampling methods for future contaminant studies.

This article presents findings of an initial collaborative

screening effort and methods for future coordinated sam-

pling. The main goals of this study were to determine the

relationship and patterns of Hg levels in waterbirds within

the Gulf of Maine, to evaluate blood and eggs as indicators of

methylmercury (MeHg) bioavailability, and to identify

species that are the most effective bioindicators of Hg

availability in this marine system. We used the following

criteria to evaluate if a species was suitable as a bioindicator:

Are the birds abundant and widespread in Gulf of Maine, do

they represent specific foraging guilds, and/or do they have

the potential for Hg levels above estimated effects thresholds.

We focused on a 6-year time period (2001–2006) and did not

attempt to assess temporal trends in Hg levels.

METHODS

From 2001 to 2006 (plus two sites in 1998), GOMSCAN

members collected data on Hg levels in individual eggs, egg

composites, and blood through multiple concurrent studies

of 17 species of aquatic birds breeding on 35 sites in the Gulf

of Maine (Figure 1, Appendix A). Viable and non-viable

bird eggs were collected and placed in polyethylene bags

(15% of the samples were analyzed as composites). During

processing, we collected standard egg morphometrics

(length, breadth, total egg weight, egg content weight, and

volume), determined embryo development, placed the

contents into labeled, chemically clean jars, and froze the

samples (see detailed methods in Evers et al. 2003).

Juvenile (nest-bound chicks, young of year) and adult

birds were captured at their breeding colonies and blood

taken. Blood was collected by venipuncture of the coeta-

neous ulnar (wing) vein. Generally, less than 1.0 cc of

blood was collected because most laboratories require only

0.25 cc of blood for Hg analysis. Blood was placed in la-

beled vials or tubes and frozen. All necessary state and

federal permits were in place prior to field collections.

The data utilized in this compilation were generated at

multiple laboratories over a period of several years.

Differences in sample preparation and analytical methods

were considered insignificant, although they were not
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quantified and split samples were not submitted to all labs to

determine inter-lab differences. The quality assurance and

quality control procedures—including standard reference

material (SRM), blanks, duplicates, and spikes—that each

laboratory used did meet federal standards set for the U.S.

and Canada (e.g., recoveries of all SRMs were within estab-

lished certified ranges). Mercury analysis was either by cold

vapor atomic absorption spectroscopy (CVAAS) or direct

mercury analyzer. Eggs were homogenized, lyophilized, and

powdered. Only total Hg was analyzed because > 90% of

egg (Scheuhammer et al. 2001; Bond and Diamond 2008)

and 95% of blood (Fournier et al. 2002; Rimmer et al. 2005)

Hg levels are MeHg. Therefore, we used total Hg levels in

these tissues to measure the availability of MeHg. Egg Hg was

analyzed as dry weight and converted to wet weight using

[(dry weight*(100-% moisture))/100]. We standardized our

Hg data to wet weight because it was the common measure in

the multiple databases we used for this study. Each labora-

tory determined percent moisture during the freeze-drying

process. Many eggs cracked during the freezing process in

the field; therefore, we were able to measure egg volume on

only a subset of the eggs. Using this subset, we calculated egg

fresh mass (total egg mass/egg volume) and found no sig-

nificant difference from measured egg mass, demonstrating

insignificant loss of moisture (ANOVA, F1,134 = 0.14,

P = 0.71). Hg in blood was measured as wet weight.

We performed statistics with JMP (SAS Institute Inc.

2001). Each egg composite (two or more eggs homoge-

nized) was treated as a sample size of one. We log10

transformed the data to improve normality and homosce-

dasticity. Breaking the Hg data down by bird species and

age into 30 groups, the log-transformed Hg data were

normally distributed for 76% of the groups as determined

using one-sample Kolmogorov–Smirnov tests (SYSTAT

2007). We tested for differences among species in tissue Hg

concentrations using analysis of variance (ANOVA), fol-

lowed by Tukey–Kramer HSD paired comparisons. We

pooled data from the same location and species across years

(2001–2006). We were not able to test for interaction be-

tween island and species because all species were not

present at each sampling site. For species sampled at more

than four colonies, we tested for Hg differences among

islands. We compared the variance of log10-transformed Hg

data for individual eggs within double-crested cormorant

(Phalacrocorax auritus) clutches and among composite

samples of five eggs taken from different cormorant nests

within several nesting colonies, to assess the relative

importance of within-clutch and within-island variation in

egg Hg concentrations. To determine the influence of

foraging strategy and trophic status on tissue Hg levels

among species, we grouped waterbirds into three foraging

categories based upon documented diets (Appendix B).

Figure 1. Sampling locations of

the Gulf of Maine study area

(n = 35 islands).
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RESULTS

Geometric mean Hg levels in the blood of adult water-

birds differed among seven species measured (Figure 2A;

ANOVA, F6,196 = 17.63, P < 0.0001). Blood Hg concen-

trations in adult razorbills were greater than those in great

black-backed (Larus marinus) and herring gulls (L. ar-

gentatus) (Tukey HSD, P < 0.05). Arithmetic mean Hg

levels in tissues of each species are listed in Appendix B.

Juvenile waterbirds also differed in their geometric mean

Hg levels in blood (Figure 2B; ANOVA, F11,144 = 15.57,

P < 0.0001). Blood Hg concentrations in juvenile black-

crowned night-herons (Nycticorax nyctocorax) were greater

than those in Leach’s storm-petrels (Oceanodroma leu-

corhoa) (Tukey HSD, P < 0.05). In paired data sets, Hg

levels in adult blood were significantly higher than juve-

nile blood (Table 1; all P < 0.0001). The ratio of geo-

metric mean blood Hg levels in adults versus juveniles of

Leach’s storm-petrel, herring gull, common tern (Sterna

hirundo), razorbill (Alca torda), and Atlantic puffin

(Fratercula arctica) ranged from 3.8 to 21.61, averaging

overall 7.8:1 in the five species (Table 1).

Geometric mean egg Hg levels differed among the 12

species measured (Figure 2C; ANOVA, F11,232 = 37.08,

P < 0.0001). Egg Hg concentrations were greater in

Leach’s storm-petrel, black guillemot (Cepphus grylle), and

razorbill compared to herring gull and glossy ibis (Plegadis

falcinellus) (Tukey HSD, P < 0.05). Egg Hg levels were not

different among islands for common terns (ANOVA,

F5,64 = 0.909, P = 0.48) nor for composite samples of

double-crested cormorant eggs (ANOVA, F6,39 = 2.09,

P = 0.07). However, black guillemot egg Hg levels were

different among islands (ANOVA F4,23 = 17.24,

P < 0.0001). Geometric mean egg Hg levels were greater in

guillemot eggs from Western Island than those from the

other four islands sampled (Tukey HSD, P < 0.05). There

were low within-clutch (Table 2) and within-island differ-

ences in Hg levels of cormorant eggs (Table 3). In cor-

morant clutches where we analyzed each egg, clutches with

higher mean Hg levels also had a greater Hg range and

standard deviation, despite using log10-transformed Hg

data. Based on limited data, this relationship was positive

and significant for a polynomial curve fit (2nd degree

polynomial, r2 = 0.99, df = 5; P = 0.01).

Geometric mean Hg concentrations in eggs and adult

blood differed among waterbirds classified by foraging

Figure 2. Geometric mean Hg levels (lg/g, ww) ± SE in adult

blood (A), juvenile blood (B), and eggs (C). Sample sizes in

parentheses. Means not sharing a common letter are significantly

different (P < 0.05). ARTE, Arctic tern; ATPU, Atlantic puffin;

BCNH, black-crowned night-heron; BLGU, black guillemot; COEI,

common eider; COTE, common tern; DCCO, double-crested

cormorant; GLIB, glossy ibis; GBBG, great black-backed gull; HERG,

herring gull; LBHE, little blue heron; LETE, least tern; LHSP, Leach’s

storm-petrel; PIPL, piping plover; RAZO, razorbill; SNEG, snowy

egret; and WILL, willet.
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strategy (see Appendix B) (ANOVA, eggs: F2,243 = 56.52,

P < 0.0001; adult blood: F2,200 = 11.07, P < 0.0001).

Piscivorous birds had greater geometric mean Hg levels in

eggs (geometric mean ± SE; 0.30 ± 0.02 lg/g, ww) than

species that foraged on both invertebrates and fish

(0.14 ± 0.02 lg/g, ww) or on invertebrates alone (0.11 ±

0.02 lg/g, ww; Tukey HSD, P < 0.05). Similarly, adult

piscivorous birds had greater geometric mean Hg levels in

blood (0.35 ± 0.08 lg/g, ww) than adult birds that foraged

on both invertebrates and fish (0.16 ± 0.2 lg/g, ww) or on

invertebrates alone (0.08 ± 0.03 lg/g, ww; Tukey HSD,

P < 0.05). We did not observe any differences in juvenile

blood Hg levels among foraging groups (ANOVA,

F2,153 = 0.18, P = 0.84).

DISCUSSION

Tissue Selection

Blood

Our results indicate that adult blood is more useful than

chick blood for detecting long-term temporal trends, be-

cause Hg levels in adults are higher and are not confounded

by metabolic effects. Blood Hg levels in chicks are lower

when Hg is depurated into growing feathers (Spalding et al.

2000) and, consequently, may not represent full dietary

exposure. Since the specific relationship between MeHg

uptake and feather molt is relatively unknown and may

Table 1. Ratio of Hg in Adult and Juvenile Blood

Species Geometric mean ratio (adult:juvenile) Statistics (AVOVA)

Leach’s storm-petrel 21.6:1 DF 1, 46; F = 143.00; P < 0.0001

Herring gull 3.8:1 DF 1, 47; F = 23.96; P < 0.0001

Common tern 7.5:1 DF 1, 47; F = 81.68; P < 0.0001

Razorbill 7.6:1 DF 1, 33; F = 67.53; P < 0.0001

Atlantic puffin 6.3:1 DF 1, 36; F = 44.51; P < 0.0001

Geometric mean of ratios 7.8:1

Table 2. Within-clutch Total Hg (lg/g, ww) Variation of Double-crested Cormorant Eggs

Island n Geometric mean Min Max SE

Bluff Island 4 0.12 0.11 0.13 0.003

Egg Rock 3 0.24 0.23 0.25 0.006

No Man’s Land 3 0.30 0.25 0.33 0.024

Sugarloaf Island 4 0.24 0.23 0.26 0.008

Thrumcap Island 3 0.32 0.28 0.40 0.037

Table 3. Within-island Total Hg (lg/g, ww) Variation of Double-crested Cormorant Eggsa

Island n Geometric mean Min Max SE

Duck Island 3 0.42 0.40 0.45 0.016

Egg Rock 3 0.30 0.26 0.34 0.024

No Man’s Land 2 0.23 0.14 0.38 0.118

Stratton Island 3 0.35 0.31 0.40 0.025

Sugarloaf Island 3 0.36 0.32 0.42 0.032

Thrumcap Island 3 0.26 0.21 0.36 0.049

aSamples size is the number of five egg composites.
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vary from species to species, interpreting Hg difference is

challenging and is therefore confounded by chick age.

In all species with paired data, adult blood Hg levels

were significantly higher than those of juveniles (Table 1);

adult/juvenile blood Hg ratios by species are valuable in

predicting adult Hg levels based on juvenile’s or vice versa.

This trend has also been observed in herring and Franklin’s

gulls (L. pipixcan; Burger and Gochfeld 1997), common

mergansers (Mergus merganser), tree swallows (Tachycineta

bicolor), belted kingfishers (Megaceryle alcyon), common

loons (Gavia immer; Evers et al. 2005), double-crested

cormorants, snowy egrets (Egretta thula), and black-

crowned night-herons (Henny et al. 2002). This difference

is attributed to chicks’ depurating Hg into their growing

feathers thereby reducing blood levels (Spalding et al. 2000;

Evers et al. 2005), and to the chicks consuming smaller prey

than adults—smaller fish will have bioaccumulated less Hg

(Evers et al. 2005).

Leach’s storm-petrel had the highest ratio with adults

having 21.6 times higher Hg than chicks; this ratio is

greater than that observed for other piscivorous birds

(Burger and Gochfeld 1997; Burgess et al. 2005; Evers et al.

2005). Trophic position likely does not explain the differ-

ence: Hedd and Montevecchi (2006) found no trophic

difference between Leach’s storm-petrel adults and juve-

niles; and Antarctic petrel (Thalassoica antarctica; Hodum

and Hobson 2000) and southern giant petrel (Macronectes

giganteus; Forero et al. 2005) chicks occupied a higher

trophic position than adults. Bond (2007) found no sig-

nificant relationships (all r2 < 0.05) between d15 N and

total mercury in seabird feathers, blood, and yolk, and only

a weak relationship in albumen (r2 = 0.25) from seabirds in

the Gulf of Maine region. There are at least two possible

explanations for this higher ratio in storm-petrels. First,

storm-petrel chicks may have different pharmacokinetics of

Hg as a result of their slower development (fledg-

ing ± 65 days) compared to other species. This may allow

storm-petrel chicks to depurate a higher proportion of

their ingested Hg burden to their growing feathers, since

their feather growth occurs over a 60–70-day period

(Huntington et al. 1996). Second, the observed difference

in juvenile and adult blood Hg levels in storm-petrels may

result from possible differences in prey Hg levels between

the breeding and non-breeding foraging areas. Lower levels

of Hg in prey fed to chicks may result in lower blood Hg

levels if adults feed on different prey with higher Hg levels

prior to the breeding season and bioaccumulate higher

levels of Hg in their soft tissues than chicks.

Eggs

Our results indicate that egg Hg levels are as effective as

adult blood for biomonitoring. Adult blood and egg Hg

levels were within the same order of magnitude, and they

both displayed species differences (Appendix A, Figure 2A,

C). Although species with paired adult blood and egg data

sets did not have identical Hg exposure order, piscivorous

birds had significantly higher blood and egg Hg levels than

birds feeding on both invertebrates and fish or on inver-

tebrates alone. Therefore, eggs are as effective as blood in

detecting difference in Hg exposure between trophic levels.

Eggs are a good tissue for long-term monitoring be-

cause they represent recent local dietary uptake (Hobson

et al. 1997; Evers et al. 2003; Bond 2007). Egg nutrients are

generally allocated from exogenous rather than endogenous

sources (Hobson et al. 1997, 2000; Hobson 2006; Bond

et al. 2007a) and most species represented in this study are

documented income breeders, using exogenous nutrients

for egg production (Hobson 2006; Bond 2007). In addition,

eggs are relatively easy to collect, and clearly exhibit dif-

ferences among species and colonies. However, power

analysis and research design must take into account the

varying levels of Hg within clutches as well as within col-

onies.

When interpreting Hg levels in eggs, it is important to

consider within-clutch variation. In some studies, the first-

laid egg exhibits the highest Hg levels, and the last-laid egg

the lowest (Becker 1992; Evers et al. 2005). Cormorant egg

results in this study show little within-clutch variation

(Table 2), suggesting that one egg from a clutch can

accurately characterize Hg levels of the laying female. We

did find, however, that clutches with higher Hg levels also

had higher Hg variation among eggs within the clutch. This

indicates that analyzing each egg within a clutch will be

necessary at sites where Hg levels are known to be high,

such as near a known point source.

Another factor critical to understanding Hg levels is

within-colony variation, which ultimately determines the

number of samples needed to characterize a colony. We

found little within-colony variation in Hg levels in cor-

morant eggs (Table 3), but, similar to the above findings,

we found an increase in within-colony variation with an

increase in Hg level. This indicates the importance of

conducting a pilot study prior to large-scale sampling.

Several programs that monitor contaminant levels in

seabird eggs use parallel data on stable carbon and nitrogen

isotope ratios within the same eggs, as an aid in inter-
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preting differences in contaminant concentrations between

eggs from different nests within the same colony, between

different colonies, or between different years at the same

colony (Jarman et al. 1996; Hebert et al. 2000; Braune et al.

2002). Using stable isotope data, it is possible to assess if

differences in contaminant levels are related to differences

in trophic level or source of prey, rather than general

changes in contaminant levels in the marine environment.

Species Comparisons

Mean tissue Hg levels in most waterbird species we mea-

sured were below suggested toxic thresholds of 0.6–1.3 lg/g

(ww) in eggs (Barr 1986; Thompson 1996; Evers et al.

2003), 3.0 lg/g (ww) in adult blood (Evers et al. 2008), and

levels reported for juvenile blood, which are age dependent

(Kenow et al. 2007, 2008). Recently, findings on the relative

sensitivity of various bird species to Hg exposure appear to

vary significantly and are related to foraging guilds (Heinz

et al. 2008). Therefore, while mean egg Hg levels for Leach’s

storm-petrel and black guillemot are generally under stated

thresholds (Appendix B), evidence from Heinz et al. (2008)

indicates reproductive impairment remains plausible and

that toxic thresholds for these species need to be developed.

Generally the adult and juvenile Hg blood levels were low

and consistent with other studies (Kahle and Becker 1999;

Thompson and Dowding 1999; Bearhop et al. 2000; Evers

et al. 2005; Ikemoto et al. 2005). However, some adult

puffins, common terns, storm-petrels, and razorbills had

blood and egg Hg levels which exceeded the mean by more

than three times (Appendix B). This suggests that certain

individuals may have a specialized diet, which results in

higher Hg levels in their blood and eggs.

Piscivores in this study had higher Hg levels than in-

vertivores, and birds that forage on both invertebrates and

fish. This relationship has been documented in other

studies on marine birds (e.g., Burger 2002), waterfowl

(Evers et al. 2005), wading birds (Sundlof et al. 1994), and

fish (Peterson et al. 2002). This diet difference reflects

trophic level differences (Hobson et al. 2002; Evers et al.

2005). Invertivores such as common eider (Somateria mo-

lissima), glossy ibis, and willet (Catoptrophorus semipalm-

atus) had lower Hg levels than piscivores such as double-

crested cormorant and razorbill. Piscivores also tended to

have Hg levels higher than species that feed on both

invertebrates and fish. For example, juvenile blood and egg

Hg results show that common tern Hg levels are signif-

icantly lower than double-crested cormorant tissues.

Trophic position and foraging strategies (see Appendix B)

may also explain why Hg levels in adult blood of Leach’s

storm-petrels and razorbills, and eggs of Leach’s storm-

petrels, guillemots, and razorbills tended to be higher than

those of other species, explained further below.

Leach’s Storm-petrel

Leach’s storm-petrels consistently have some of the highest

Hg levels in multi-species studies (Elliott et al. 1992; Elliott

and Scheuhammer 1997; Burgess 2006; Bond 2007). The

Hg levels of Leach’s storm-petrel may be attributed to their

mesopelagic foraging strategy. They feed 100–200 km off-

shore beyond the continental shelf (Huntington et al. 1996)

on crustaceans and mesopelagic fish (Watanuki 1985; Hedd

and Montevecchi 2006). Monteiro et al. (1996) found that

mesopelagic fish have higher Hg levels than surface feeding

fish; they suggested that Hg is more readily available to

deep-sea fish because the methylation of inorganic Hg

mostly occurs in deep water with low oxygen. Myctophids

(lanternfish) are important prey for storm-petrels in British

Columbia, Canada (Vermeer and Devito 1988); Pearl

Island, Nova Scotia, Canada; and Middle Island, New-

foundland, Canada (Linton 1979), accounting for 55% diet

mass on Green Island and Gull Island, Newfoundland

(Montevecchi et al. 1992), and 77% of the mass of iden-

tified fish on Baccalieu Island, Newfoundland (Hedd and

Montevecchi 2006). These mesopelagic fish become avail-

able to storm-petrels when the fish rise to the surface to

feed at night (Hedd and Montevecchi 2006). Myctophids

have elevated Hg levels when compared to other fish of a

similar size (Monteiro et al. 1996; Lahaye et al. 2006), and

have varying Hg levels in different regions in the North

Atlantic (Martin et al. 2006). A fourfold increase in Hg

levels in band-rumped storm-petrels (Oceanodroma castro)

over the last 100 years further demonstrates high Hg

availability in the mesopelagic zone (Thompson et al.

1998). Therefore, the Hg levels of storm-petrels represent

primarily pelagic and mesopelagic zones, which are areas

likely removed from point and regional Hg sources, and

indicates that storm-petrels may serve as bioindicators of

global Hg temporal trends.

Black Guillemots

In contrast to the storm-petrels, guillemots serve as bio-

indicators of Hg in inshore benthic food webs. Guillemots

in the Gulf of Maine feed their chicks primarily rock
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gunnels (Pholis gunnellus; Butler and Buckley 2002): 68% of

the diet of chicks on Kent Island, New Brunswick, Canada

(Preston 1968), and 59% on Great Duck Island, Maine,

U.S.A. (Hayes 1993). Rock gunnel life history indicates they

may bioaccumulate Hg to elevated levels: the fish are long-

lived (up to 14 years), live close to sediment in the inter-

tidal zone, and feed on benthic polychaetes, amphipods,

mollusks, and crustaceans, which accumulate contaminants

(Bigelow and Schroeder 2002; Vallis et al. 2007).

The guillemots’ benthic foraging may also explain why

their eggs exhibited significant inter-island Hg variation,

while common terns and cormorants did not. This difference

may reflect prey mobility and foraging range. Common terns

feed within 20 km of breeding sites (Nisbet 2002), primarily

on white hake (Urophycis tenuis) and Atlantic herring (Clu-

pea harengus) during the breeding season (Hall et al. 2000).

Both of these species are schooling fish that move throughout

Gulf of Maine (Scott and Scott 1988). Similarly, cormorants

feed within 40 km of breeding sites (Custer and Bunck 1992)

and almost exclusively on larger fish (often schooling, up to

40 cm long; Hatch and Weseloh 1999) that are generally

highly mobile. In contrast, guillemots feed usually within

4 km of their nesting sites (Butler and Buckley 2002), and

their primary prey, rock gunnels, tend to have low mobility

during the spring and summer (Vallis et al. 2007); this sug-

gests that Hg levels in guillemots reflect a limited area around

their breeding colonies, while Hg levels in terns and cor-

morants reflect a much broader geographic range. These

results are consistent with research on polychlorinated

biphenyls (PCBs) in a contaminated site in Labrador, where

the high level of PCBs in guillemots were attributed to ben-

thic foraging, small foraging range, and limited dispersal

(Kuzyk et al. 2005).

Guillemot egg Hg levels were also among the highest re-

corded in this study, which corroborates findings from pre-

vious studies on Petit Manan Island, Maine (Mierzykowski

et al. 2005) and the Faroe Islands (Dam et al. 2004). In our

study, mean guillemot egg Hg levels on Western Island

(0.76 lg/g, ww) were nearly three times that of the highest

levels in cormorant eggs (0.28 lg/g, ww) on nearby Thrumcap

Island (6 km away). Similarly, on Eastern Egg Rock and Petit

Manan, where tern and guillemot eggs were sampled, guille-

mot egg Hg levels were 1.8 to 3.8 times higher than terns’.

Other Alcids

Puffins and razorbills are pursuit divers, feeding mainly on

local (5–20 km) schooling fish (white hake and Atlantic

herring), and marine invertebrates, particularly Mega-

nyctiphanes norvegica (Crustacea: Euphausiidae; Northern

krill) in the case of puffins (Diamond and Devlin 2003;

Bond et al. 2007b). Despite these similarities, razorbills

have consistently higher Hg than puffins in feathers (Bond

2007), eggs, and blood (this study). In general, razorbills

tend to dive deeper (Piatt and Nettleship 1985) and feed on

larger, and therefore older, fish (Bond et al. 2007b), which

bioaccumulate contaminants (Wiener and Spry 1996) and

could increase the birds’ Hg exposure.

Juveniles of Other Species

In our study, blood Hg levels in juvenile black-crowned

night-herons, black guillemots, and double-crested cor-

morants tended to be higher than other species. The higher

night-heron levels could be attributed to their feeding at

higher trophic levels (we observed them feeding on tern

chicks at the sampling site) or in an area with high Hg

availability. Cormorant chicks likely also occupy a higher

trophic position as they are commonly fed large fish (up to

40 cm; Hatch and Weseloh 1999) and black guillemot levels

are likely high for the reasons described above.

Bioindicators

Seabirds are used as bioindicators of persistent bioaccu-

lamtive toxins (PBTs) around the world (Pearce et al. 1989;

Elliott et al. 1992; Furness and Camphuysen 1997; Cifu-

entes et al. 2003; Braune 2007; Wolfe et al. 2007), and

specifically for Hg (Thompson et al. 1990, 1992, 1998;

Monteiro and Furness 1995). Since 1972, the Canadian

Wildlife Service (CWS) has analyzed Atlantic puffin, dou-

ble-crested cormorant, and Leach’s storm-petrel eggs for

Hg in Atlantic Canada (Pearce et al. 1979; Burgess 2006).

Currently, there is no such long-term monitoring in the

Gulf of Maine. We used the following criteria to select

bioindicators: Are the birds abundant and widespread in

the Gulf of Maine, do they represent specific foraging

guilds, and/or do they have the potential for Hg levels

above estimated effects thresholds?

In order to create an informative dataset to monitor

long-term trends of Hg and other PBTs in the Gulf of

Maine, we propose using an approach modeled after the

CWS protocol. From each site, our model calls for the

collection of eggs, at least every 4 years (higher frequency

will increase the power to detect time trends (Hebert and

Weseloh 2003)), from 15 separate nests of the common

416 M. W. Goodale et al.



eider, Leach’s storm-petrel, double-crested cormorant, and

black guillemot. The sample size of 15 would detect a 15%

difference between sites at a 90% confidence interval (de-

rived from a power analysis using the mean island standard

deviation, 0.11, of the log10-transformed data; SAS Institute

Inc. 2001). Since there is within-clutch Hg variation, con-

sistently collecting eggs laid in the same sequence (i.e., the

first laid egg) would reduce variation within each colony.

These eggs should be collected from Isle of Shoals, Casco

Bay, Penobscot Bay, and Bay of Fundy—not all sites have

all species. If funding limitations prevent a thorough study,

sampling could be limited to storm-petrel, cormorant, and

guillemot.

Each of these species will serve as indicators of dif-

ferent food webs in the Gulf of Maine. Common eiders

provide an inshore, site-specific Hg signal, because they

feed primarily on mollusks, crustaceans, and echinoderms

(Goudie et al. 2000). Leach’s storm-petrels utilize off-

shore pelagic and mesopelagic food webs that may reflect

global Hg levels. Double-crested cormorants are higher

trophic-level piscivores that represent the pelagic food

web for broad coastal areas because they feed on mobile

schooling fish. The black guillemot represents benthic

zone near breeding colonies. Guillemots are particularly

important bioindicators because benthic feeding birds

have higher levels of some contaminants than other

species (Braune 1987; Kuzyk et al. 2005) and Hg can

concentrate and is methylated in marine sediment

(Gagnon and Fisher 1997).

Our results indicate that Hg levels in adult blood and

eggs provide a comparable indicator of MeHg bioavail-

ability and are within the same order of magnitude. While

both tissues represent recent dietary uptake, sampling eggs

is preferred because it is consistent with CWS protocol and

researchers can collect suitable sample sizes from nesting

colonies over time. The relative ease of collecting eggs is

critical to the success of long-term monitoring.

By selecting a diverse suite of indicator species for

monitoring Hg in the Gulf of Maine region, future studies

will be able to measure changes in Hg in different food

webs of the marine environment accurately and across

multiple trophic-levels (Evers et al. 2009). This multi-tro-

phic approach would also augment existing programs such

as MusselWatch (Kimbrough et al. 2008), and GulfWatch

(Chase et al. 2001), which tend to be focused on one

component of the food web. Our study provides not only

the necessary, broad baseline data to which future studies

can be compared, but also the important process for

selecting species and tissues, thereby allowing future studies

to focus on key questions regarding changes in marine Hg

in this important region.
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