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Abstract 

1. Distance sampling is a common survey method in wildlife studies, because it allows 

accounting for imperfect detection. The framework has been extended to hierarchical distance 

sampling (HDS), which accommodates the modeling of abundance as a function of covariates, 

but rare and elusive species may not yield enough observations to fit such a model.  

2. We integrate HDS into a community modeling framework that accommodates multi-species 

spatially replicated distance sampling data. The model allows species-specific parameters, but 

these come from a common underlying distribution. This form of information sharing enables 

estimation of parameters for species with sparse data sets that would otherwise be discarded from 

analysis. We evaluate the performance of the model under varying community sizes with 

different species-specific abundances through a simulation study. We further fit the model to a 

seabird data set obtained from shipboard distance sampling surveys off the East Coast of the 

U.S.A. 

3. Comparing communities comprised of 5, 15 or 30 species, bias of all community level 

parameters and some species-level parameters decreased with increasing community size, while 

precision increased. Most species-level parameters were less biased for more abundant species. 

For larger communities, the community model increased precision in abundance estimates of 

rarely observed species when compared to single species models. For the seabird application, we 

found a strong negative association of community and species abundance with distance to shore. 

Water temperature and prey density had weak effects on seabird abundance. Patterns in overall 

abundance were consistent with known seabird ecology.  

4. The community distance sampling model can be expanded to account for imperfect 

availability, imperfect species identification or other missing individual covariates. The model 
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allowed us to make inference about ecology of species communities, including rarely observed 

species, which is particularly important in conservation and management. The approach holds 

great potential to improve inference on species communities that can be surveyed with distance 

sampling.  

 

Key words: Bayesian p-value, cluster size, hierarchical model, seabirds, sparse data, wildlife 

surveys 

 

Introduction  

Distance sampling (Buckland 2001; Buckland et al. 2005) is a popular method to survey both 

terrestrial and marine wildlife species amenable to direct observation. In distance sampling, the 

probability of detecting an individual is assumed to decrease with increasing distance from the 

observer. This allows estimation of abundance and density while accounting for observation bias. 

The framework has been extended to accommodate the modeling of abundance at multiple 

survey sites as a function of site specific covariates (Hedley & Buckland 2004; Royle et al. 2004; 

Conn et al. 2012), termed hierarchical distance sampling (HDS).  

HDS provides a framework to investigate factors influencing the abundance of individual 

species. Often, however, rare or elusive species will not yield sufficient observations to 

parameterize an individual model. Community modeling provides an approach to jointly 

analyzing multi-species data sets and sharing information across species while maintaining the 

ability to model species-specific parameters (Dorazio & Royle 2005; Dorazio et al. 2006). In this 

type of community modeling, information is shared across species by assuming a common 

underlying distribution for species-specific parameters. These distributions, in turn, are governed 
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by hyperparameters, which reflect community-level patterns and processes. The use of collective 

community data allows estimation of community and species-level parameters, even for those 

species that are rare and elusive. This concept has been applied repeatedly in occupancy 

modeling (i.e., species-level detection/non-detection data, Kéry & Royle 2008; Zipkin et al. 

2009). Multi-species distance sampling data sets have previously been analyzed using species, or 

species groups, as a covariate (Alldredge et al. 2007), but to our knowledge, no attempt has been 

made to combine community modeling based on shared hyperdistributions with the framework 

of distance sampling. 

Here, we develop a community distance sampling model that estimates both community-level 

and species-level parameters related to detection and abundance. Specifically, we extend the 

HDS framework to accommodate multi-species spatially replicated distance sampling data sets. 

The model allows for species-specific parameters (with shared hyperdistributions) in both 

components describing detection probability and abundance. We evaluate the performance of the 

model under varying community sizes through a simulation study. We further use the model to 

analyze a seabird data set obtained from shipboard distance sampling surveys in the Mid-

Atlantic, off the east coast of the U.S.A. This application is particularly relevant as seabirds are a 

highly threatened marine taxonomic group (Sydeman et al. 2012), and potential development of 

offshore wind energy facilities has raised additional concern about their conservation (e.g., 

Garthe & Hüppop 2004; Petersen & Fox 2007). Our analysis includes a community of 14 

species, of which nine did not yield sufficient observations to be analyzed individually, and 

results provide important information on abundance of this community in areas of wind energy 

development. The method holds promise for many distance sampling applications to improve 

estimation of detection and abundance of species and communities.   
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Methods 

Development of the community distance sampling model  

Distance sampling can be implemented along line transects or at survey points. We develop the 

community distance sampling model based on line transect surveys, but note how this can be 

adjusted to point transects. In line transect based distance sampling, for each observation the 

perpendicular distance of the object of interest to the transect line is recorded (for point surveys, 

use the radial distance) (Buckland 2001). Detection on the transect is assumed to be perfect and 

the detection probability p of an object is defined by a declining function g of its distance to the 

transect line, x, for example, using a half-normal detection function  

. 

Here, σ is the scale parameter of the half-normal function. In reality, observations are frequently 

grouped into k = 1, 2, … K distance categories. This binning smoothes inaccuracies in distance 

estimation and reduces effects of movement of animals in response to observers. Let L be the 

length of the line transect survey, and vk the width and Ak the area covered by the k-th distance 

category, equivalent to Lv (or 2Lv when both sides of a transect are surveyed). Further, let b be 

the K+1 break points of the K distance categories. Then, detection probability in k, pk, is the 

integral of g(x) over the break points of k: 

 

Individuals are assumed to be uniformly distributed in space, so that the probability of an 

individual occurring in distance category k, ψk, is the proportion of the sampled area covered by 

the k-th distance interval (note that in line transect surveys with constant v, Ak is also constant, 

but in point surveys, this area increases with increasing distance from the survey point (Buckland 
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2001)). The vector of the number of observations in each of the K distance categories, y, is a 

multinomial random variable with size  and cell probabilities , 

which simplifies to  for the constant-v line transect case. Note that this formulation 

of the detection model is conditional on detection (Buckland 2001), but see Royle et al. (2004) 

for an unconditional formulation.  

We can link n to the true abundance N using the total detection probability : 

. 

When distance sampling surveys are carried out at j = 1, 2, ..., J survey sites, observations and 

model parameters are indexed by site: 

 

Following Royle et al. (2004), we assume Nj to follow some probability mass function f (e.g., 

Poisson or negative binomial), and its expected value can be modeled as a function of 

covariates, X, e.g., 

 

 

where α0 is the intercept and α is a vector of coefficients associated with the covariates X. 

Analogously, detection parameters can be modeled as functions of site specific covariates 

(Marques & Buckland 2003; Oedekoven et al. 2013); for example, for the scale parameter of the 

half-normal detection function: 

 

Where β0 is the intercept, and β the vector of coefficients associated with the detection covariates 

in Y.  
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To expand this approach to a community model for i = 1, 2, … M species, the parameters are 

further indexed by species, and ascribed hyperdistributions to the resulting sets of species-

specific parameters. For example, each species i has a detection intercept  such that: 

 

The hyperparameters of these distributions, here the mean and variance , constitute the 

community parameters shared by all species and are estimated as part of the model, as are the 

species-specific parameters. This is equivalent to including a normally distributed random effect 

for species in the model.  

 

Simulation study 

We evaluated performance of the community distance sampling model through a simulation 

study. We considered three community sizes with M = 5, 15 or 30 species. We simulated 

abundance for these species across J = 50 sites, Nij, from a Poisson distribution. We generated 

site and species-specific Poisson means, λij, with a normally distributed species-specific 

abundance intercept  (hyperparameters:  and ), one site-specific 

covariate X (normally distributed with mean 0 and variance 1), and the respective normally 

distributed species-specific coefficient αi (hyperparameters:  and ). This led to 

total abundances within communities varying from <10 to >1000.  

From these abundances we simulated distance sampling detection data across a strip of width w 

= 10, divided into 10 distance categories of width v = 1. We generated species and site specific 

detection parameters σij on the log-scale with a normally distributed species-specific intercept β0,i 

(hyperparameters: and ), a site-specific binary covariate Y and an 
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associated fixed effect, . The choice of hyperparameters resulted in variation in 

baseline (i.e., before covariate effects) within communities from 1 to 5 units on the real scale.   

For each scenario (M = 5, 15 or 30) we generated 100 data sets and analyzed these with the data-

generating model. For community level parameters, we evaluated root mean square error, bias 

and confidence interval coverage across all 100 iterations for each scenario. We used the 2.5 and 

97.5 percentiles as the Bayesian 95% credible interval (95BCI). For species-level parameters we 

were interested whether parameter estimates were influenced by species abundance. Therefore, 

we grouped species into abundance categories from 1-10, 11-100, 101-1000, and >1000 

individuals. For each abundance category and each community scenario we calculated bias and 

coverage of parameters across all iterations.  

To evaluate whether the community model improved abundance estimates over single-species 

models, we extracted species-specific data sets from the community data generated as described 

above and analyzed them with a single-species HDS model containing the same covariates on 

abundance and detection. Because we hypothesized that improvements should be stronger for 

species with fewer detections, we selected species-specific data sets with 21-60, 61-100 or 101-

140 total detections (as a rule of thumb, estimating abundance from distance sampling data 

requires at least 60 to 80 observations (Buckland et al. 1993), so our criterion of >20 

observations is liberal). For each observation category, we contrast community model and single 

species model estimates of abundance, looking at average coefficient of variation (standard error 

divided by estimate) and bias. We implemented this comparison separately for each of the three 

communities.  

We further explored the ability to assess fit of the detection and the abundance component of the 

community distance sampling model. We tested model fit using Bayesian p-values (Gelman et 
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al. 1996). These values are obtained by calculating some fit statistic (e.g., a residual) that 

depends on the model parameters and the observed data, determining the same fit statistic for a 

new set of data generated from the model under consideration, and then calculating the portion of 

time the residuals from the newly generated data are larger (or smaller) than those of the original 

data. If the model fits the data appropriately, the resulting Bayesian p-value will be close to 0.5 

(we suggest values < 0.1 or >0.9 may indicate lack of fit). We calculated Bayesian p-values for 

the species and site-specific abundances, Nij, to assess fit of the abundance component; and for 

the observations y to assess fit of the detection component (for details, see Appendix S1).  

All Nij are latent and subject to the specific assumptions of the distribution from which they are 

simulated. To test whether Bayesian p-values based on Nij are able to distinguish between 

competing abundance models, we generated abundance data for a community of 15 species from 

a negative binomial abundance model, with the expected values generated as in the main 

simulation study, and a dispersion parameter of 1. We generated detection data from these 

simulated communities as described in the main simulation study, analyzed the resulting data 

with a Poisson and a negative binomial abundance model, and compared Bayesian p-values 

between the correctly specified and the mis-specified model. We further used these simulations 

to evaluate the effect of overdispersion in abundance on model performance. 

 

Implementation 

We implemented the community distance sampling model in a Bayesian framework, using the 

software JAGS (Plummer 2003) accessed through R version 2.15.2 (R Core Team 2014). We 

used vague priors on community level parameters. The model code and R script for the 

simulation study can be found in Appendix S2. We ran three parallel Markov chains started at 
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different initial values with a burn-in of 500 iterations and 8,000 post burn-in iterations. For the 

M = 5 case, we ran 20,000 iterations to achieve convergence. Because of the large number of 

parameters to be monitored, we thinned chains by 8 to reduce the size of the model output. We 

tested for chain convergence using the Gelman-Rubin statistic (Gelman et al. 2004). This 

statistic is a measure of among-chain versus between chain variance, and values < 1.1 indicate 

convergence.  

 

Application: Seabirds off the East Coast of the U.S.A.  

Seabird line transect data were collected along 656.1 km of boat transects located off the coast of 

Delaware, Maryland and Virginia (Fig. S3-1), sampled over the course of four days in April 

2012. Observations were restricted to one side of the boat and to the quadrant defined by the line 

of travel and a 90-degree angle to this line of travel. Perpendicular distance of any bird, or the 

center of a cluster of birds, to the transect line was recorded. Each cluster was counted as a single 

record and the size noted. The survey yielded a final data set that contained 632 records of 14 

seabird species (Table S3-1, for details of data preparation, see Appendix S3). Preliminary 

analysis of the number of detections against distance for all species, both separately and 

combined, indicated the data conformed to the assumption of decreasing detection with increased 

distance (Fig. S3-2 and S3-3). 

During the boat surveys, water temperature and sea state were recorded at 30-minute intervals. 

We used the points at which these environmental covariates were measured to divide the ship 

transects into 73 segments (Fig. S3-1), which constituted the survey sites. The resulting segments 

varied in length from 1.1 to 20.5 km (mean: 8.99 km, SD: 2.51 km). We accounted for these 

differences by using segment length, Lj, as an offset in the abundance component of the model. 
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Additionally, hydroacoustic data were collected at 500-m resolution to obtain an index of prey 

biomass. Details of covariate collection are given in Appendix S3. We analyzed the entire multi-

species data set using the novel community distance sampling model. To contrast community 

model estimates with estimates from single-species models, we analyzed the 5 species in the data 

set with >20 observation with single-species HDS models. 

 

Covariates 

We used in situ collected water temperature (TEMP, °C) and an index of prey biomass density 

(PD) derived from hydroacoustic data, as well as distance to shore (DTS, km) as covariates on 

abundance. To define segment level values of TEMP and DTS, we took the mean of 

measurements from the start and end point of each segment. For PD, we averaged all 

measurements taken within a segment. The majority of species in our dataset are visual hunters, 

and are likely responding to foraging cues from the top several meters of the water column. 

Therefore, we used prey density in the first 3 to 5 m of the water column (the first 2 m are missed 

by echo sounding devices). TEMP is considered an inverse proxy for prey availability (Hunt et 

al. 1981; Pinaud & Weimerskirch 2002), whereas echo sounding data gives a direct index of 

prey availability (Wiebe et al. 1990; Demer & Hewitt 1995).   

We explored the effect of sea state (Beaufort values recorded in the survey ranged from 1 = light 

air/water ripples, to 4 = moderate breeze/small waves and fairly frequent white caps; BEAU) on 

the detection parameter σ. In Appendix S3 we further present a model accounting for bird 

behavior in the detection component.   
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Parameterization of the community distance sampling model for the seabird dataset 

Based on the observed distances, we set the maximum observation distance w at 1000 m and 

binned observations into K = 10 100-m distance categories. We used a negative binomial 

distribution (with species and site-specific mean λij and constant dispersion parameter r) for 

abundance and included segment length (as offset) and all abundance covariates in the predictor. 

We included a random species-specific intercept and random species-specific coefficients for 

these covariates in the abundance component:  

 

. 

We assumed that the detectability of different species is influenced in a similar way by sea state 

and therefore estimated fixed coefficients β for all species in our model for the detection 

parameter σ. Differences in detectability among species were accounted for by a random species 

specific intercept: 

 

 (note that BEAU is categorical). We used Normal hyperdistributions for all random species-

specific parameters and estimated the respective community means and variances.  

 

Accounting for clusters of birds 

When objects are observed in clusters, then individuals are not observed independently, and 

clusters should be used as the unit of observation. In this situation, Nij is no longer the number of 

individuals of species i at site j, but the number of clusters. To estimate total abundance, we 

augmented the above described model with a component describing cluster size of observation 
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m, Cm, to be a zero-truncated negative binomial variable, with a mean, , and dispersion 

parameter, ρ, shared by all species: 

. 

Note that Cm is partially observed, i.e., known for observed clusters and unknown for 

 unobserved clusters. In general, it may be more appropriate to have a species-

specific mean cluster size; however, in the seabird dataset, 74% of all observations were of 

single individuals; 95% of all observations were of 4 or less individuals. We therefore decided 

against the additional complexity of a species-specific cluster size model, and also refrained from 

adding cluster size into the detection model as a covariate. Many seabird studies, however, report 

observations of large aggregations of birds. In these situations, the effect of cluster size on 

detectability (e.g., Smith et al. 1995; Pearse et al. 2008) can be included as a covariate on the 

log-linear predictor of σ. We calculated total abundance for a species at a site as the sum of all 

clusters for that species at that site, and total abundance in the survey area by summing over all 

clusters across all sites. The survey area is equivalent to a 1000-m strip along the combined boat 

transects. 

 

Implementation 

We implemented the analysis in JAGS (Plummer 2003), with three parallel Markov chains, a 

burn-in of 1,000 iterations and 50,000 post burn-in iterations, thinned by 20. We report results as 

posterior means and standard deviations, as well as 95BCI. We considered covariate effects as 

strong/significant if their 95BCI did not overlap 0. Posterior distributions of total abundance 

estimates across all sites for the less abundant species tended to be right-skewed. Therefore, we 
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provide the mode and the mean in our summary statistic for species level abundances. Data, R 

script and JAGS model code to implement this analysis are in Appendix S2. 

 

Results 

Simulation study – general performance 

Community means for the three species-level random effects distributions (abundance intercept 

and coefficient, and detection intercept), as well as the fixed effect coefficient of the detection 

covariate had low to moderate bias (-2% to 14%); for the abundance intercept, bias declined with 

increasing community size, from -13% and 14% for M = 5 and 15, to 2% for M = 30.  

Bias for the standard deviations of these three species-level random effects distributions was 

moderate to high (15 – 66%) for M = 5 and declined to moderate-low (4 – 12%) and low (-0.2 – 

3%) for M = 15 and M = 30, respectively. Root mean square errors for all parameters decreased 

as community size increased. For details, see Table S4-1.  

Bias in species-specific abundance intercepts α0 was moderate to low and overall decreased with 

increasing abundance and increasing community size (Table S4-2). Bias in the species-specific 

habitat coefficient α was moderate in communities of all sizes and showed no discernable 

relationship with abundance (Table S4-3). For both parameters we do not present relative bias 

because true values are often close to 0, and division by these values leads to very large numbers, 

even when absolute bias is low. Relative bias in the intercept of σ was low to moderate across 

communities, and declined with increasing abundance (Table S4-4). Confidence interval 

coverage for all parameters was nominal or close to nominal.  

Relative bias in total abundance estimates for the smallest abundance category (0 – 10 

individuals) was high (90 – 145%) for communities of all sizes; absolute bias was only 6 – 8 
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individuals and the high relative bias is a function of the low true abundances encountered in this 

category. Relative bias was moderate (9 – 11%) for the 11 – 100 abundance category, and low (2 

– 6 %) for the two highest abundance categories. Confidence interval coverage was (close to) 

nominal across categories. These patterns held true for communities of all sizes (Table 1). 

With the negative binomial distribution for abundance data generation and model fitting (M = 15 

species only), species-specific parameters showed very similar magnitude and patterns in bias 

and confidence interval coverage compared to those under a Poisson distribution (Tables S4-2 – 

S4-4). Bias in community level parameters was also very similar, but these parameters had much 

higher root mean squared errors (Table S4-1). 

 

Simulation study – Community versus single species models 

For small communities (M = 5), bias in abundance estimates under the community model was 

considerably higher for rarely observed species (20 – 60 detections) and moderately higher for 

the intermediate (61 – 100 detections) group, than under a single-species model (34% versus 4%, 

and 9% versus 3%, respectively). For larger communities (M = 15 or 30), bias in abundance 

estimates was comparable and low (<2%) under single species and community models, but 

community models resulted in more precise estimates for the lowest observation class (Figure 

S4-1). 

 

Simulation study – Model fit 

Bayesian p-values for the correctly identified Poisson abundance model for communities with M 

= 15 species were close to 0.5, for both the detection and the abundance component (abundance: 

mean = 0.518, SD = 0.072, range 0.364 - 0.732; detection:  mean = 0.511, SD = 0.052, range 
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0.402 - 0.638). When using a Poisson model to analyze data generated under a negative binomial 

abundance model, the Bayesian p-value for the abundance model fell to 0.081 (SD 0.065, range 

0 – 0.270); when analyzing these same data with the correctly specified model, the Bayesian p-

value was 0.475 (SD 0.025, range 0.386 - 0.527), indicating that the Bayesian p-value based on 

the latent N was useful for investigating fit of the abundance component.  

 

Seabirds off the East Coast of the U.S.A. 

The community distance sampling model provided estimates of abundance of 14 seabird species 

(Table S3-4), and identified covariates influencing their detectability and distribution. Bayesian 

p-values indicated the community distance sampling model fit the data appropriately (Table S3-

2). Sea states 3 and 4 had a strong negative effect on detectability of seabirds, relative to sea state 

1 (Fig. S3-5, Table S3-3). Detailed results of this and the model considering bird behavior as a 

covariate on detection can be found in Appendix S3. 

Distance to shore had a strong negative effect on seabird abundance across the entire community, 

with a mean, μα1, of -0.999 ± 0.252 (Table S3-3). The effect was significantly negative for nine 

species (Fig. S3-4). The mean effect of water temperature and prey density on the seabird 

community were negligible (-0.001 ± 0.170 and -0.018 ± 0.159, respectively, Table S3-3), but 

temperature had a significantly positive effect on two species (Figure S3-4).  

The (back-transformed) mean detection parameter across species, exp(μβ0), was 216.269 ± 

21.104 m at sea state = 1 and declined to 159.415 ± 18.680 m at sea state = 4. Among species, σ 

at sea state = 1 varied between 183.943 and 271.566 m (Figure S3-5). Mean cluster size for all 

species was 1.927 ± 0.107 individuals. Total abundance across all survey sites was highest for 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Common Loons (mode = 1677) and lowest for Forster’s Terns and Surf Scoters (mode = 2) 

(Table S3-4). 

Comparing single-species and community model estimates for 5 species with >20 records, we 

found that most parameter estimates were consistent across the two modeling approaches, and 

confidence intervals for all parameters overlapped (Table S5). In general, differences in 

parameter estimates were strongest for those parameters fixed for the entire community in the 

community model. There were some considerable differences in estimates of total abundance 

(e.g., Laughing Gull single species model: 376; community model: 608). These stemmed from 

species-specific mean cluster size estimates under single-species models being quite different for 

some species from the community-wide mean adopted in the community model. Estimates of 

number of clusters, N, were largely consistent across approaches.  

 

Discussion 

The hierarchical framework of community modeling as implemented here, has been applied 

mostly within occupancy models (Kéry & Royle 2008; Zipkin et al. 2009). We developed a 

community distance sampling model to estimate relationships between abundance and 

environmental covariates for multiple species, using species-level random effects. Random 

effects have been used in distance sampling in other contexts (e.g., modeling variation in σ 

across sites Oedekoven et al. 2015), but not to accommodate multi-species data sets. Estimation 

of the hyperparameters governing these random effects distributions should be influenced by the 

number of species in the community, which correspond to the number of levels of the random 

effects. Indeed, we observed reduced bias with increasing community size for some, and 

improved precision for all community level parameters. In addition, we had to run models for 
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small communities considerably longer to achieve convergence. The strongest effect of small 

community size came into play when comparing the performance of single-species versus 

community HDS models. In communities with only 5 species, for species with 20 to 100 

observations, single-species models provided abundance estimates with much lower bias than 

community models (Fig. S4-1). In larger communities, both approaches performed similarly. 

This suggests that the community distance sampling model may not work well for communities 

with 5 or fewer species, though further investigation of the effect of number of observations on 

model performance would provide more insight on these specific scenarios. In such small 

communities, more suitable modeling approaches might be to share parameters across species, or 

to group species and use these groups as fixed effects in the model (e.g., Alldredge et al. 2007).  

Species specific parameters tended to be less biased for more abundant species, rather than being 

primarily influenced by community size, which is intuitive, as these also tend to be the species 

with more detections, and hence, more data to inform parameter estimates (e.g., Pacifici et al. 

2014).  

The main benefit of using a community model over a single-species model lies in the ability to 

obtain abundance estimates of species observed so rarely they cannot be modeled individually. 

Previous analyses of multi-species data sets have relied on analyzing species separately, 

excluding very rarely detected species (e.g., Studeny et al. 2013). The community model 

performed well in providing estimates of total abundance of species, including rare ones, but 

abundance estimates exhibited some degree of “shrinkage”, where abundance of very rare and 

very abundant species is pulled towards the community mean (i.e., over and underestimated, 

respectively). In real applications, parameter estimates can also be influenced by how one 

defines a community. Pacifici et al. (2014) showed for occupancy models that (a) combining all 
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species into a single community potentially masks differences among sub-communities in their 

response to covariates; and (b) especially for rarely observed species, parameter estimates are 

sensitive to group membership.   

We found that Bayesian p-values based on the latent site and species specific abundances Nij 

were useful in detecting mis-specified abundance models (in this case, they indicated lack of fit 

when analyzing data generated from a negative binomial distribution with a Poisson model). It is 

noteworthy, though, that amount and patterns in bias in parameter estimates under the mis-

specified model were very similar to those under the correctly specified models. Thus, parameter 

estimates appeared to be fairly robust to our specific mis-specification of the abundance model.  

 

Seabirds off the East Coast of the U.S.A. 

One advantage in the approach developed here is the flexibility related to species-specific 

differences in parameters. In the seabird dataset, the detection parameter σ showed variation 

across species: the large and predominantly white Northern Gannet had a significantly larger σ 

than the community average (Fig. S3-5). Similarly, the community mean effect of TEMP on 

abundance was close to 0 (Table S3-3), yet TEMP had a significantly positive effect on 

abundance for two species (Fig. S3-4). We expected the consistent negative effect of distance to 

shore on species abundance. DTS can be a limiting factor for foraging activities (Weimerskirch 

2007; Fauchald 2009) and correlate positively with ocean depth,  another important predictor of 

seabird foraging activity and abundance (e.g., Freeman et al. 2010; Nur et al. 2011). Contrary to 

our expectations, we observed weak effects of TEMP and PD on the abundance of seabird 

species (Fig. S3-4). Lower water temperatures are generally associated with higher primary 

productivity. There are, however, several intermediate trophic levels between primary production 
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and top marine predators like seabirds (Barnes & Hughes 1988), which can lead to spatio-

temporal lags in the response of seabirds to changes in these covariates. It is also conceivable 

that the in-situ measures of PD and TEMP, taken immediately under the boat, do not adequately 

represent the environmental conditions in the 1000-m strip sampled.  

Overall, Common Loon, Northern Gannet and Laughing Gull had the highest estimated 

abundances in the study area. In contrast, Surf Scoters and Forster’s Terns were extremely rare 

during the April survey. These patterns are in agreement with what is known about the seasonal 

ecology and foraging behavior of these species (for details, see Appendix S3).  

For the more frequently observed species, analysis with single-species HDS models indicated 

that there was some variation among species in the parameters we considered fixed across all 

species in the community model. Most notably, average cluster size was variable, leading to 

differences between the two modeling approaches in total abundance estimates for some species. 

This indicates that different parameterizations of the cluster size model itself may be required to 

adequately describe the observed data, for example in the form of species-specific means, finite 

mixtures, or distributions allowing for more variability in counts (Zipkin et al. 2014). Estimates 

in numbers of clusters, N, were largely consistent across both modeling approaches, but 

differences were larger than those observed in the simulation study (Fig. S4-1). This is likely the 

result of higher levels of variability in parameters among species than the normally distributed 

random effects of the community model allowed for. 

 

Modeling detection probability and missing individual covariates 

We focused our simulations and application on a fully observed, site-level categorical covariate, 

but we also explored additional detection covariates in our analysis of the seabird data set 
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(Appendix S3). Particularly, we investigated whether bird behavior, classified as “on the water” 

or “in the air”, had an impact on detection distances of seabirds. Behavior is an observation-level 

covariate, and in order to accommodate this kind of covariate, we estimated abundance for the 

two behavioral categories separately, using behavior-specific intercepts in the abundance model. 

Although we found no significant effect of behavior on the detection parameter σ, we believe 

that the conceptual set-up of the “behavior” model allows for some interesting ecological insight 

into the percentage of individuals in a population performing certain behaviors (Fig. S3-6). The 

approach of estimating abundance separately for two behavioral categories circumvents the issue 

of unknown behavioral category of unobserved individuals/clusters, but likely performs poorly 

with an increasing number of categories (due to low sample size per category), and breaks down 

completely for continuous individual covariates. In these cases, a different approach is to treat 

individual covariates of unobserved clusters as missing data, and specify a parametric model to 

estimate missing covariate values (e.g., Conn et al. 2014). This approach is equivalent to how the 

seabird application deals with cluster size of unobserved seabirds (see Accounting for clusters of 

birds), and could also be used to accommodate observations with uncertain species identification 

and/or missing distance-to-transect information (excluded in the seabird application). 

Specifically, the present model could be augmented with a species identification model as 

developed by Conn et al. (2013, 2014), where species identity is treated as a latent multinomial 

variable. Knowledge about species-specific identification probabilities (e.g., from double-

observer surveys or experiments with known species identity) can be used to formulate 

informative priors on these multinomial cell probabilities (with vague priors, unidentified 

observations will be distributed among species according to their proportion in the identified 

observations). In our model description, missing distances could be sampled from the 
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multinomial model specified for the observations y (see Development of the community distance 

sampling model) by assuming the probability of not recording a distance occurs at random across 

distance bins.  

Certain behaviors can render animals unavailable for detection – diving in seabirds and other 

aquatic species, temporary emigration from the survey area (Chandler et al. 2011), or failure to 

sing in song-based bird surveys (e.g., Diefenbach et al. 2007). Failure to take into account 

availability <1 will lead to negative bias in abundance estimates. At present, our model assumes 

that individuals are always available to be detected. Availability can be estimated separately, for 

example from intensive observation studies or telemetry studies that allow inference on animal 

behavior (e.g., Diefenbach et al. 2007; Conn et al. 2014), and can be incorporated into the 

estimator of abundance (Buckland 2001) so that Eq. 1 becomes 

 

Here, N.aij is the number of individuals of species i at site j that are available for detection, p.tij is 

the total detection probability, and  

 

where p.aij is the probability of species i at site j being available. 

Uncertainty about these estimates could readily be incorporated by treating availability as a 

parameter, rather than fixing it, and formulating an informative prior based on available 

information. Alternatively, Chandler et al. (2011) developed an approach to account for 

availability in distance sampling studies that requires repeated sampling of survey sites, which 

could also readily be incorporated into the community distance sampling framework.     
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Conclusion 

Distance sampling is employed in the study of a variety of taxa, and often, data on multiple 

species are collected (e.g., Jathanna et al. 2003; Somershoe et al. 2006; Williams & Thomas 

2007). The present approach allows such studies to investigate community ecology and 

distribution of many species from within a flexible and coherent modeling framework. In the 

context of conservation and management, rare and listed species are often of particular interest, 

and the ability to incorporate rare species into analyses provides important information about 

their abundance and distribution.  
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Table 1: Summary results for estimates of species-specific total abundance, N, from 100 

iterations of a community distance sampling model, split by abundance categories. M = number 

of species in the community, # cases = number of species, across all iterations, in abundance 

category; Mean true = average input value for category; Mean estimate = average posterior mean 

estimate of parameter for category; Bias = average relative bias, CI coverage = percentage of 

time, out of # cases, true value fell within 2.5
th

 and 97.5
th

 percentile of the posterior of the 

estimate.  

M Abundance category 

# 

cases 

Mean 

true Mean estimate Bias CI coverage 

5 1 - 10 11 6.909 14.819 144.545 0.818 

 

11 - 100 276 52.181 54.584 10.83 0.931 

 

101 - 1000 212 236.83 231.748 -2.603 0.948 

 

> 1000 1 2537 2480.776 -2.216 1 

15 1 - 10 28 7.607 13.667 90.027 0.964 

 

11 - 100 785 51.343 53.518 9.211 0.958 

 

101 - 1000 670 249.221 243.178 -2.113 0.942 

 

> 1000 17 1518.235 1443.983 -5.748 0.882 

30 1 - 10 79 7.304 14.725 124.232 0.911 

 

11 - 100 1614 51.889 54.447 9.538 0.962 

 

101 - 1000 1271 239.629 232.853 -2.844 0.947 

 

> 1000 36 1420.389 1391.255 -2.177 0.944 

 

 


