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Abstract
Freshwater fish in several regions of New York State (NYS) are known to contain concentrations of mercury (Hg) associated
with negative health effects in wildlife and humans. We collected blood and breast feathers from bald eagle (Haliaeetus
leucocephalus) nestlings throughout NYS, with an emphasis on the Catskill region to determine their exposure to Hg. We
assessed whether habitat type (lake or river), region (Delaware–Catskill region vs. rest of NY) or sample site elevation
influenced Hg concentrations in bald eagle breast feathers using ANCOVA. The model was significant and accounted for
41% of the variability in log10 breast feather Hg concentrations. Mercury concentrations in nestling breast feathers were
significantly greater in the Delaware–Catskill Region (geometric mean: 14.5 µg/g dw) than in the rest of NY (7.4 µg/g, dw),
and greater at nests located at higher elevations. Habitat type (river vs. lake) did not have a significant influence on breast
feather Hg concentrations. Geometric mean blood Hg concentrations were significantly greater in Catskill nestlings (0.78 µg/
g ww) than in those from the rest of NY (0.32 µg/g). Mercury concentrations in nestling breast feathers and especially blood
samples from the Delaware–Catskill region were generally greater than those reported for most populations sampled
elsewhere, including areas associated with significant Hg pollution problems. Bald eagles can serve as valuable Hg
bioindicators in aquatic ecosystems of NYS, particularly given their broad statewide distribution and their tendency to nest
across all major watersheds and different habitat types.
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Introduction

Mercury (Hg) pollution is broadly present in aquatic and
terrestrial ecosystems throughout the globe. While a portion
of Hg pollution enters ecosystems from natural sources
(e.g., volcano emissions, natural Hg deposits) or direct
inputs (e.g., chlor-alkali facilities and landfills), the majority
originates from anthropogenic sources of air pollution (i.e.,

coal-fired power plants, gold mining, incinerators) (Fitz-
gerald et al. 1998; Driscoll et al. 2013; Pacyna et al. 2016;
Kocman et al. 2017; Streets et al. 2017). Once deposited,
sulfur-reducing bacteria and other microbes covert inor-
ganic Hg to its toxic organic form, methylmercury (MeHg)
(Gilmour et al. 2013), which readily accumulates in con-
sumers and biomagnifies in both aquatic and terrestrial
foodwebs (Atwell et al. 1998; Henny et al. 2003; Cristol
et al. 2008; Rimmer et al. 2010; Townsend 2011). In aquatic
systems, top predators such as piscivorous birds often have
concentrations of MeHg in their tissues ≥1 million times
higher than concentrations found in water (Watras et al.
1998; Wiener et al. 2003). As a result, piscivorous birds are
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commonly sampled to monitor spatial and temporal patterns
of Hg contamination in the environment and to assess Hg
risks to organisms (Jackson et al. 2016; Scheuhammer et al.
2016; Evers 2018).

Mercury contamination has been well-documented in
fish and wildlife across North America (Evers et al.
1998, 2011; Kamman et al. 2005; Monson et al. 2011;
Jackson et al. 2016). Numerous studies have documented
adverse impacts of MeHg exposure such as reduced
reproductive success, behavioral changes, and neurological
problems in a wide variety of bird species (Burgess 2005;
Scheuhammer et al. 2007; Ackerman et al. 2016; Whitney
and Cristol 2017; Evers 2018). When the adverse impacts of
Hg are considered in concert with other stressors (i.e.,
weather, other contaminants, disturbance, nutrient defi-
ciencies, disease, parasites), it has the potential to have
long-term consequences for the stability of wildlife popu-
lations (Rimmer et al. 2005; Hallinger and Cristol 2011;
Stern et al. 2012; Evers et al. 2014).

Due in part to west to east prevailing wind patterns that
facilitate short- and long-distance transport of airborne
pollutants, Hg contamination is especially prevalent in
northeastern North America (Evers and Clair 2005; Keeler
et al. 2005; Driscoll et al. 2007; Evers et al. 2007; Scheu-
hammer et al. 2016). New York State has long been central
to air pollution research and regulatory responses in the
United States due in part to interrelated issues of particulate
pollution (i.e., SOx, NOx), acid rain and Hg pollution, which
are often pronounced in high elevation regions of the state
such as the Adirondack and Catskill Mountain regions
(Driscoll et al. 2003). In a statewide assessment of Hg in
sportfish (largemouth bass Micropterus salmoides; small-
mouth bass Micropterus dolomieu; walleye Sander vitreus
and yellow perch Perca flavescens), the New York State
Department of Environmental Conservation (NYSDEC)
found that Hg concentrations were notably higher in fish
from lakes in the Catskill and Adirondack Forest Preserves
compared to other regions of the state (Simonin et al. 2008;
NYSDOH 2018). These findings were expected because Hg
deposition rates are greater in these areas than surrounding
regions due in part to their higher elevation and because
lake characteristics in these areas (i.e., low productivity, low
pH, water level fluctuations) are known to further enhance
Hg methylation (Sauer et al. this issue; Miller et al. 2005;
Vanarsdale et al. 2005; Driscoll et al. 2007; Yu et al. 2013;
Drenner et al. 2013).

Geographic areas with notably elevated concentrations of
Hg in biota have been referred to as biological Hg hotspots
(Evers et al. 2007). In a regional assessment of Hg in
freshwater food webs in the northeastern U.S. and south-
eastern Canada based upon common loon (Gavia immer)
and yellow perch bioindicators, Evers et al. (2007) identi-
fied the Adirondack Mountains as one of five biological Hg

hotspots, while the Catskill Mountains were identified as
one of nine “areas of concern” (these areas did not meet
rigorous sample size criteria for hotspot designation, but
exceeded specific adverse effect Hg thresholds in two or
more secondary data layers). While the common loon
served as the primary avian piscivore Hg bioindicator in
that study and others (Schoch et al. 2014a; Yang et al.
2019), limitations of the loon’s breeding range to lakes in
northern NYS preclude similar use in river systems or in
other regions of specific interest, such as the Catskill
Mountains. Here, we evaluate Hg exposure in NYS bald
eagles (Haliaeetus leucocephalus), which nest on lakes and
rivers throughout the state and whose exposure to Hg has
not been comprehensively evaluated.

Bald eagles are among the most high profile and well-
established contaminant bioindicators in North America
(Colborn 1991; Bowerman et al. 2002; Elliott and Harris
2002; Golden and Rattner 2003). Numerous natural history
traits such as a long lifespan, high trophic status, high
fidelity to nesting areas, and diverse nesting habits favor the
use of bald eagles in environmental contaminants mon-
itoring (Stalmaster 1987; Palmer et al. 1988; Bowerman
et al. 1995; Buehler 2000; Elliott and Harris 2002). While
several tissues have been collected from adult bald eagles
for use in toxicological assessments (i.e., blood, feather,
egg, organs) (Wiemeyer et al. 1989, 1993; Weech et al.
2003; Cristol et al. 2012; DeSorbo et al. 2018), blood and
feathers collected from nestlings are most commonly sam-
pled because they can be acquired efficiently and non-
lethally during the breeding season (Bowerman et al. 2002;
Dykstra et al. 2005). Mercury concentrations in nestling
blood and feathers are highly correlated (Welch 1994;
Weech et al. 2006; DeSorbo et al. 2018; Kramar et al. 2019)
and represent a surrogate for dietary Hg exposure in adults
(Wood et al. 1996; Weech et al. 2006), with blood reflecting
recent exposure (i.e., hours to days; Bearhop et al. 2000;
Fournier et al. 2002; Kenow et al. 2007b; Condon and
Cristol 2009) and nestling breast feathers reflecting body
reserves and exposure over the 1–3 week period in which
feathers were grown prior to sampling (Furness et al. 1986;
Ackerman et al. 2011).

While bald eagles have been used extensively to monitor
Hg exposure and risk to breeding populations in nearby
regions of the Upper Midwest, the Great Lakes and parts of
New England (Bowerman et al. 2002; Dykstra et al.
2010, 2019; Pittman et al. 2011; DeSorbo et al. 2018), only
one published study to our knowledge has assessed Hg
exposure in resident bald eagles in NYS (Wiemeyer et al.
1984; 3 eggs from one nesting territory, 1971, 1977–78).
The dramatic recovery of the bald eagle population in NYS
since its near extirpation (1 pair in 1970; NYSDEC 2016) is
such that the current distribution of the species now enables
its use to monitor spatial and temporal patterns of
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contaminants in the environment (Fig. S1). Since bald
eagles nest in association with multiple habitat types, (i.e.,
freshwater lakes and rivers, estuarine, marine), broad scale
sampling can enable comparisons of contaminants across
different watersheds and habitat types in New York. Pre-
vious studies have detected differences is tissue Hg con-
centrations of bald eagle nestlings raised in different habitat
types and watersheds (Welch 1994; Evers et al. 2005;
DeSorbo 2007; DeSorbo et al. 2009, 2018).

In this study, we characterize Hg exposure in nestling
bald eagles throughout interior NYS, with a special
emphasis on the Catskill Mountain region due to increased
concerns for Hg risks to piscivores in this region. We
assessed the influence of region, habitat type (lake versus
river) and nest site elevation on Hg exposure in NYS bald
eagles.

Methods

Nestling bald eagle handling and tissue sampling

In conjunction with annual nest-checks and eaglet banding,
we visited 40 bald eagle nesting territories throughout
interior NYS to collect blood and breast feather samples
from bald eagle nestlings to be analyzed for Hg (Fig. 1). All
nestling samples analyzed in this study were collected in
2006 except one sample collected in 2004. Reconnaissance
surveys via fixed wing aircraft or helicopter guided the
selection of nest sites containing young approximately
6 weeks of age, the optimal age for handling. Nest success,
eaglet age and logistical factors (i.e., landowner permission,
tree safety) influenced which nest sites could be sampled.
Trees were climbed with spike and lanyard arborist tech-
niques. Nestlings were lowered to the ground and banded
with uniquely coded U.S. Geological Survey (USGS) bird
bands and uniquely coded anodized blue leg bands (Acraft
Sign and Nameplate Co., Edmonton, Canada). Blood and
feather samples were generally collected from all nestlings
present using methods described elsewhere (DeSorbo et al.
2018). Bald eagle banding and sampling was conducted
under the authorization of state and federal permits held by
staff of the New York Department of Environmental Con-
servation, Endangered Species Unit.

Habitat type, region and elevation influences on Hg
exposure in bald eagle nestlings

To evaluate the potential influence of habitat type on Hg
exposure in bald eagle nestlings, we categorized nest sites
visited for sampling into two habitat type categories: lakes
(includes reservoirs) and rivers. To evaluate geographic

patterns in Hg exposure, we overlaid HUC-4 watershed
boundaries (USGS 2019) and United States Environmental
Protection Agency (USEPA) ecoregions (USEPA 2013)
over sampling locations in ArcMap 10.6.1 (ESRI 2018) to
provide a basis for grouping sample sites for statistical
analyses (Fig. 1). Sample sites falling within the Catskill
Park, the Catskill High Peaks and Transition region, and the
Low Poconos ecoregions, as delineated in the EPA ecor-
egions coverage (USEPA 2013) were designated as the
Delaware–Catskill region. One nest site (NY #29) located
6.8 km north of the Catskill transition ecoregion boundary
(Fig. 1) was included in the Delaware–Catskill region rather
than the Hudson River watershed where it was physically
located because we presumed that the foraging habitat (i.e.,
mostly lakes) and dietary habits of eagles associated with
this nest would be more similar to nests in the nearby
Delaware–Catskill region than the other nests sampled in
the Hudson River watershed, which were >40 km away and
predominantly associated with the Hudson River corridor.
Lastly, since factors associated with elevation relate to Hg
concentrations in biota sampled in New York (Townsend
et al. 2014), we estimated elevation (m above sea level)
using the USGS 3DEP GIS coverage (USGS 2017) asso-
ciated with bald eagle nest sites, and evaluated its influence
on bald eagle Hg exposure.

Laboratory analyses

All blood and feather samples collected in this study were
analyzed for Total Hg (THg) at the Savannah River Ecology
Lab (SREL) at the University of Georgia (Aiken, SC). All
laboratory analyses included in this study met United States
Environmental Protection Agency (USEPA) quality assur-
ance standards (USEPA 2007a).

Blood

Blood samples contained clots and therefore underwent
lyophilization and homogenization prior to analyses. Frozen
blood samples were dried to a constant weight utilizing a
LabConco FreeZone 4.5 system. Samples were then
homogenized to powder consistency with a PTFE pestle
grinder. Grinders were cleaned with 0.3 M ultra-high purity
nitric acid and ASTM Type 1 water between use. Moisture
content was not measured, but dry weight results were
converted to wet weight using: blood Hg (µg/g, ww)=
blood Hg dw*(100–77% moisture)/100), assuming a con-
sistent blood moisture content of 77% (R. Taylor, Trace
Element Research Laboratory, College Station, Texas;
mean ± SD: 77.4% ± 3.7; min-max: 60.5.8–86.2; median
77.4%; n= 430; values > 2 SDs from the mean were
excluded).
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Feathers

Individual breast feather samples were washed with a dilute,
mercury-free detergent, rinsed with ASTM Type 1 water,
and lyophilized to constant weight utilizing a LabConco
FreeZone 4.5 system.

Analysis

Samples were analyzed for THg content by combustion-
amalgamation-cold-vapor atomic absorption spectro-
photometry (DMA 80; Milestone, Monroe, CT, USA)
according to U.S. Environmental Protection Agency (EPA)
method 7473 (USEPA 2007b). For quality assurance, each
group of 10 to 15 samples included a blank and standard
reference material (SRM; TORT-2 lobster hepatopancreas
[National Research Council of Canada (NRC), Ottawa, ON]
or DORM-2 (dogfish muscle; NRC). Method detection
limits (MDL; threefold the standard deviation of procedural
blanks) for the samples depended on sample mass and were
calculated separately for each observation based on the

mass of sample analyzed. MDLs ranged from 5.31 to
25.43 ng/g dry mass. All the sample concentrations excee-
ded the detection limits. Mean percent recoveries of THg
for the SRMs were 102% ± 8% (DORM-2; n= 16) for
breast feathers, and 96% ± 6% (TORT-2; n= 3) and 99% ±
6% (DORM-2; n= 2) for blood. SRMs utilized during
analyses encompassed the range of Hg concentrations
encountered for each sample set. Matrix matched SRM
were unavailable during the time frame of the analyses.

Statistical analyses

Mercury concentrations in blood and breast feathers were
averaged at nesting territories for within-year siblings. No
nesting territories were sampled in multiple years. We
inspected distributions and quantile plots to assess data nor-
mality. We transformed blood Hg data using a log10(blood
Hg+ 1) transformation, and we transformed breast feather Hg
concentrations using a log10(feather Hg) transformation to
improve the normality and homoscedasticity of the Hg data.
We used a Bartlett’s test to test for equal variances and then

Fig. 1 Location and habitat type associated with sites where tissue samples (blood, feather, or both) were collected from bald eagle nestlings,
relative to watershed boundaries, park boundaries and broad geographic regions within New York State in 2004 (n= 1) and 2006 (n= 39)
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compared mean Hg concentrations using a t-test for pairs of
means, and one-way ANOVA for >2 means. We used a
Tukey’s HSD test to evaluate pairwise differences among
means. We used |Studentized residuals| >3 to identify and
remove outliers as described in SYSTAT (2009; p.II-10) and
Field et al. (2012; p. 269, 292). These references note that
large Studentized residuals (>3 in absolute magnitude) indi-
cate outlier values and such values can indicate possible data
problems (SYSTAT 2009). Analyses were conducted with
and without outliers, which are shown in figures.

Influence of habitat type, elevation and region on
Hg concentrations in nestling bald eagles

Given our low and uneven sampling intensity outside of the
Delaware–Catskill region, and knowledge that fish Hg was
high in this region and in the Adirondacks, evaluations were
necessary to determine if we could pool data from different
subregions in New York to enable more powerful statistical
analyses. We therefore combined Hg data collected in
western NY, the Susquehanna River watershed and the St.
Lawrence region into one group (Western–Susquehanna–St.
L; n= 14; Fig. 1), and then compared it to Hg data collected
in two other areas, the Adirondacks (n= 1) and the Hudson
River watershed (n= 6), using ANOVA. This grouping
resulted in sufficient sample sizes to enable an ANCOVA
analysis to evaluate the influence of location within or outside
of the Delaware–Catskill region (region), habitat type (lake,
river), and sample site elevation on log10(feather Hg) using
ANCOVA. Prior to the ANCOVA, we confirmed that nest
site elevation did not confound our regional comparison by
analyzing the relationship between breast feather Hg con-
centrations and elevation within each region. Since the
number of blood samples collected in this study was limited,
ANCOVA of blood Hg data was not feasible. Lastly, we
evaluated the association between mean territory nestling
blood Hg concentrations and mean territory nestling feather
Hg concentrations using least squares regression.

Statistical analyses were conducted using SYSTAT 13
(SYSTAT Software Inc., San Jose, CA). Geometric means
and asymmetric standard deviations are presented in text,
tables and figures. Arithmetic summaries of data from this
study and other information are presented in the supple-
mental materials. Results of statistical tests were considered
significant at α= 0.05.

Results

Hg concentrations in nestling bald eagle tissues

We collected blood (n= 19) and breast feather (n= 44)
samples from nestling bald eagles in 40 nesting territories

within watershed-defined subregions of New York (Fig. 1,
Table S1). Mercury was detected in all tissues analyzed.
Mercury concentrations in individual nestlings ranged from
0.08–1.44 µg/g ww in blood (overall geometric mean:
0.65 µg/g ww), and 1.2–27.1 µg/g dw in breast feathers
(geometric mean: 14.5 µg/g (Fig. 2).

Influence of habitat type, elevation and region on
Hg concentrations in nestling bald eagles

Sample sizes in each habitat type and subregion were limited,
especially for blood samples. An analysis comparing mean
log10(feather Hg) concentrations among three regions outside
the Delaware–Catskill region (Western–Susquehanna–St. L,
the Adirondacks and the Hudson River watershed; Fig. 1)
indicated there were no significant differences in Hg exposure
in nestlings sampled in these three areas (p= 0.24, R2=
0.148, F2,18= 1.566). Exclusion of one identified outlier
(NY#122 in the Hudson River watershed; Students residual:
−3.666) did not change the significance of this test (p=
0.148, R2= 0.201, F2,17= 2.139). We thus combined breast
feather Hg data from these three regions into a single group
comprised of samples collected outside the Delaware–Catskill
region (rest of NY hereafter). Before evaluating the influence
of location within or outside of the Delaware–Catskill region
(region), habitat type (lake, river), and sample site elevation
on log10(feather Hg) using ANCOVA, we confirmed eleva-
tion did not confound region by evaluating the relationship
between log10(feather Hg) and elevation within each of the
two regions. Log10(feather Hg) was not significantly related to
elevation within the Delaware–Catskill region
(p= 0.353, R2= 0.058, F1,15= 0.920; range: 178–439m);
however the relationship between these two variables was
significant within the rest of NY group (p= 0. 0269, R2= 0.
232, F1,19= 5.750; range: 0–497m), which had a wider range
in elevations. The relationship between feather Hg and ele-
vation remained highly significant after we removed one
outlier (NY#122; Studentized residual: −4.349; p= 0. 00434,
R2= 0. 232, F1,18= 10.637).

Given the significant association between Hg and ele-
vation within the rest of NY group and overall, we con-
cluded elevation did not confound region and proceeded
with an ANCOVA. The ANCOVA model was significant
and accounted for 41% of the variability in log10(feather
Hg) (Table 1). Mercury concentrations in nestling breast
feathers were greater in the Delaware–Catskill region than
in the rest of NY (Fig. 2, Table 2, Fig. S1, Table S2), but
were also greater at nests located at higher elevations
(Fig. 3). Habitat type did not have a significant influence on
feather Hg. The ANCOVA model remained significant after
the removal of a single outlier (NY#122; Studentized resi-
dual: −4.276; Table S3). Similar to Hg concentrations in
breast feathers, geometric mean blood Hg concentrations
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were significantly greater in Delaware–Catskill nestlings
than in those from the rest of New York (n= 16, t14=
−3.44, p= 0.004) (Tables 2, S2, S4, Fig. S2). Low sample
sizes precluded statistical comparisons of Hg concentrations
in nestling blood samples collected in lake versus river
habitat types (Tables S5, S6).

Relationship between Hg concentrations in nestling
blood and breast feathers

We assessed the association between Hg concentrations in
nestling breast feather and blood samples collected from the
same nesting territory. Mean territory breast feather Hg
concentrations were significantly related to mean territory
blood Hg concentrations (Fig. 4). A single low Hg outlier
exerted significant leverage on the regression. Nevertheless,
the blood-feather Hg relationship remained significant after
excluding this outlier.

Discussion

This study provides the first comprehensive assessment of
Hg exposure in the NYS bald eagle population. Our find-
ings revealed that Hg concentrations in nestling bald eagle
tissues (blood, feather) nearly spanned the range of Hg
exposure observed in populations elsewhere (Pittman et al.

Table 1 Analysis of Covariance (ANCOVA) results of the impact of
region, habitat type and sample site elevation on nestling bald eagle
breast feather Hg concentrations (log10[feather Hg]) in New York
State, USAa,b

Source df Mean squares F P

Region 1 0.349 6.0771 0.0136*

Habitat type 1 0.0169 0.329 0.5699

Elevation 1 0.409 7.926 0.0081*

Error 34 0.0516 – –

aR2= 0.41
bBefore ANCOVA was conducted, regression equations were determined
to exhibit homogenous slopes

*Indicates significant test result (p < 0.05)

Fig. 2 Mercury concentrations in blood and breast feathers of bald eagle nestlings sampled in the Delaware–Catskill region and the rest of New
York (rest of NY) in 2004 (n= 1) and 2006 (n= 39)
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2011, DeSorbo et al. 2018), with some individuals exhi-
biting notably elevated tissue Hg concentrations. Our ana-
lyses indicated that Hg concentrations in breast feathers
collected from bald eagle nestlings were influenced by their
location relative to the Delaware–Catskill Region and nest
site elevation, but not by habitat type associated with
the nest.

Many of the factors affecting geographic patterns of
MeHg availability in freshwater and terrestrial ecosystems
have been well-described (Driscoll et al. 2003, 2007; Evers
et al. 2007; Munthe et al. 2007; Simonin et al. 2008; Eagles-
Smith et al. 2016). In general, freshwater aquatic systems
with elevated MeHg availability often exhibit some com-
bination of characteristics including low productivity,
abundant wetlands, regular wetting and drying cycles, and
specific water chemistry parameters that promote Hg
methylation and biomagnification (i.e., SO4, pH, acid neu-
tralizing capacity [ANC], dissolved organic carbon)
(Abernathy and Cumbie 1977; Grigal 2003; Kramar et al.
2005; Chen et al. 2005; Chumchal et al. 2008; Simonin
et al. 2008; Eagles-Smith et al. 2016; Broadley et al. 2019).
These and other factors promote a high degree of landscape
sensitivity to Hg inputs, creating the potential for develop-
ment of a “biological Hg hotspot”—an area with notably
elevated concentrations of Hg in biota relative to the sur-
rounding landscape (Evers et al. 2007).

The finding in our study that Hg concentrations were
elevated in nestling bald eagle tissues sampled in the
Delaware–Catskill region is consistent with previous indi-
cations that the Catskill Park region is an area of concern for
Hg contamination in northeastern North America (Miller
et al. 2005; Evers et al. 2007). This region is subject to
higher rates of Hg deposition compared to surrounding
areas as a result of its higher elevation and location
downwind from regional and distant Hg pollution sources to
the south and west (Miller et al. 2005; Vanarsdale et al.
2005; Ye et al. 2019). Unique water chemistry parameters
in this region further enhance Hg bioavailability. Simonin
et al. (2008) noted that the pH, ANC and calcium con-
centrations were 10 times lower in lakes within the Adir-
ondack and Catskill Parks compared to lakes outside these
areas. The Delaware–Catskill region also contains numer-
ous reservoirs, including several large impoundments that
are part of the New York City water supply. Changes in Hg
bioavailability have been linked to a number of physical,
chemical and biological changes associated with the
flooding of terrestrial habitats and regular wetting and
drying cycles in the littoral zone (Verta et al. 1986; Sche-
tagne and Verdon 1999; Snodgrass et al. 2000). Of the 10

Table 2 Geometric mean, lower and upper asymmetric standard deviations, range and sample sizes of blood and breast feather Hg concentrations
in bald eagle nestlings sampled in two different regions of New York, USA, and arithmetic mean and standard deviation of sample site elevation
(m above sea level)

Blood Hg, µg/g ww Breast feather Hg, µg/g dw Elevation (m)

Region n GeoMean Lower SD Upper SD n GeoMean Lower SD Upper SD n Mean SD

Delaware-Catskill 10 0.78 (0.33–1.41) 0.49 1.13 17 14.5 (5.3–25.7) 9.5 22.1 17 322 (178–440) 95

Rest of NY 6 0.32 (0.09–0.63) 0.13 0.54 21 7.4 (1.2–21.1) 3.9 14.3 23 198 (0–497) 167

Overall 16 0.59 0.27 1.0 38 10.0 5.2 19.2 40 251 153

Min–max values in parentheses

Fig. 3 ANCOVA regression plot of the relationship between elevation
and breast feather Hg concentrations in bald eagle nestlings sampled in
the Delaware–Catskill region (Catskills) and areas outside of the
Catskill region (rest of NY) in 2004 (n= 1) and 2006 (n= 39). The
ANCOVA Model was significant both including (Table 1) and
excluding the outlier (open circle; Table S2)

Fig. 4 Linear regression plot of log10 (blood Hg+ 1) and log10 (breast
feather Hg) concentrations in bald eagle nestlings in New York State
(p= 0.003, R2= 0.54, n= 14; log10[breast feather Hg]= 2.6595*log10
[blood Hg+ 1]+ 0.5012). The blood-Hg relationship remained sig-
nificant after exclusion of the low Hg outlier: (p= 0.027, R2= 0.37,
n= 13; log10 [breast feather Hg]= 1.4722*log10 [blood Hg+ 1]+
0.8089). Curved lines show 95% confidence interval
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lakes (12 nesting territories) we sampled in the
Delaware–Catskill region, 90% were impounded, compared
to 53% of lakes in the rest of NY group (7 of 13). Previous
studies have suggested that water level changes may con-
tribute to elevated Hg levels in fish observed in the Catskill
Park and elsewhere in NYS (NYSDEC 2008; Simonin et al.
2008).

Elevated Hg concentrations have been noted in other
biota in the Delaware–Catskill region. Townsend et al.
(2014) found that Hg concentrations increased in forest
floor horizons, red-backed salamanders Plethodon cinereus
and Catharus thrushes along an increasing elevational
gradient in the Catskill Forest Preserve, and raised concerns
about the long-term release of high elevation Hg into lower
elevation watersheds. Along with the Adirondack region,
the Catskill Mountain region was highlighted as an area of
concern in a statewide assessment of Hg concentrations in
predatory fish (Simonin et al. 2008). Analyses of several
contaminants in fish from the New York City reservoir
system determined Hg was the primary contaminant of
concern in fish tissue, with fish exceeding the USEPA
piscivorous wildlife criterion for Hg in high trophic level
fish (346 ng/g; USEPA 1997) in 50% of the samples from
13 fish species at all 16 reservoirs sampled (NYSDEC
2005). Mercury contamination was prominent in 10 reser-
voirs in particular, including four east of the Hudson River
and all six reservoirs west of the Hudson River within the
Delaware–Catskill region (all six were sampled in the pre-
sent study; Table S1) (NYSDEC 2005, Simonin et al. 2008;
see also NYSDEC 2006a, b). The New York State
Department of Health (NYSDOH) subsequently issued fish
consumption advisories at 11 additional NYS reservoirs,
bringing the current total to 14 of 19 reservoirs in NYS
(NYSDOH 2018). No comparison data exists to our
knowledge on Hg exposure in other piscivorous birds in the
Delaware–Catskill region.

Positive relationships between Hg and elevation have
been previously noted in biotic and abiotic studies (Lawson
et al. 2003; Miller et al. 2005; Townsend et al. 2013, 2014;
Yu et al. 2013). Meteorological conditions such as
increased cloud and fog cover and higher precipitation rates
are important to increasing total Hg deposition at elevation
(Vanarsdale et al. 2005; Driscoll et al. 2007; Townsend
et al. 2014), while habitat characteristics at elevation such as
increased coniferous forest cover further facilitate atmo-
spheric Hg exchange and enhance MeHg bioavailability
(Yu et al. 2013; Drenner et al. 2013; Townsend et al. 2014).
High elevation habitats also receive greater inputs of acidic
deposition and sulfates, which further enhance Hg methy-
lation (Driscoll et al. 2003; Burgess and Meyer 2008; Riva-
Murray et al. 2011; Schoch et al. 2014b). Although no other
studies have assessed the relationship between Hg and
elevation in bald eagles, we suspect this association will be

unique to mountainous regions such as those in NYS, where
bald eagles nest across a wide elevational gradient (Table 2)
and also experience high Hg inputs to areas with site
characteristics facilitating Hg methylation.

In our study, habitat type (lake vs. river) did not have a
significant influence on Hg concentrations in nestling
feathers. This finding is contrary to that for bald eagles
studied in Maine, where Hg exposure was greater in nest-
lings raised near lakes rather than rivers (Welch 1994; Evers
et al. 2005; DeSorbo et al. 2018). Higher Hg exposure at
lake versus river sample sites has also been documented in
other piscivores such as belted kingfishers (Megaceryle
alcyon) and numerous freshwater fish (Kamman et al. 2005;
but see Pennuto et al. 2005). Higher flushing rates at rivers
and related dilution effects on Hg are considered to be
among the most important factors driving differences in
MeHg bioavailability between lake and river habitats
(Fimreite 1974; Evers et al. 2005). Other factors that pro-
mote MeHg production such as low pH (i.e., <6.3), high
dissolved organic carbon, and fluctuating water levels are
generally more characteristic of freshwater lakes than rivers
(Meyer et al. 1995; Chen et al. 2005; Burgess and Hobson
2006). Lacking differences in feather Hg concentrations
between nestlings from lake and river habitat types in our
study may be related to low sample sizes of habitat types
represented within individual watersheds sampled. In our
study, Hg concentrations appeared higher at lake vs. river
sites within some subregions (i.e., Delaware–Catskill
region; Tables S5, S6), but not in others, a pattern also
observed in major watersheds across Maine (DeSorbo 2007;
DeSorbo et al. 2009). Similarities in bald eagle Hg exposure
between these habitat types may also reflect variation in the
eagles’ diets, particularly when abundant food is available
in a different habitat type nearby. While inland bald eagles
predominantly prey upon fish local to the nest when
available (Todd et al. 1982; Thompson et al. 2005), bald
eagles are not strictly piscivorous and dietary emphasis on
non-fish prey (i.e., herbivorous mammals and birds) and
some anadromous fish can lower Hg exposure. As such,
prey remains collected at the nest site identified as a low Hg
outlier in our analyses (NY#122; P. Nye, unpublished data)
indicated heavy dietary emphasis on mallards (Anas pla-
tyrhynchos), which are often low in Hg (Evers et al. 2005;
Hall et al. 2009).

Mercury exposure outside the Delaware–Catskill
region

Our ability to assess Hg exposure patterns in nestling bald
eagles sampled in specific subregions outside the
Delaware–Catskill region is limited due to small sample
sizes relative to the area we sampled throughout NYS. Past
statewide assessments of Hg in fish indicated that in
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addition to the Catskill Forest Preserve, Hg concentrations
were also elevated in the Adirondack region (NYSDEC
2008; Simonin et al. 2008). In our study, the breast feather
sample with the highest Hg concentration in the rest of NY
region originated from the Adirondack Park (21.1 µg/g).
Evidence of elevated Hg exposure in the Adirondack region
in fish, songbirds and common loons has been demonstrated
in other studies (Evers et al. 2007; Simonin et al. 2008; Yu
et al. 2011; Schoch et al. 2014a; Burns and Riva-Murray
2018; Driscoll et al. 2019, Sauer et al. this issue). Further
sampling is needed to assess Hg risk to bald eagles residing
in the Adirondack region. Sampling in our study also is
suggestive that bald eagles in the Allegheny River water-
shed in the southwestern corner of the state may be exposed
to elevated Hg levels (range: 12.1–14.0 µg/g, n= 3), a
finding consistent with fish consumption advisories issued
in Pennsylvania for the Allegheny River and reservoir due
to mercury and PCB contamination (PADEP (2018). There
are no fish consumption advisories for the Allegheny River
and reservoir in NYS (NYSDOH 2018).

Mercury in nestling bald eagles—population
comparisons

The geometric mean Hg concentration in bald eagle nestling
blood from in the Delaware–Catskill region (0.78 µg/g ww)
was greater than that found in most bald eagle populations
elsewhere in North America. This includes contaminated
sites such as Pinchi Lake, British Columbia (0.57 µg/g ww;
associated with a Hg mine; Weech et al. 2006) and Maine
lakes, which are notably contaminated with Hg from
atmospheric deposition (0.56–0.62 µg/g; (DeSorbo et al.
2009, 2018); see also Evers et al. 2008). Only two bald
eagle studies reported higher average blood Hg concentra-
tions than bald eagles sampled in the Delaware–Catskill
region: (1) a severely contaminated region in western Ore-
gon (1.2 µg/g, n= 82; Wiemeyer et al. 1989), and (2) a
subset of nests (n= 3) sampled along the South Fork of the
Shennandoah River in in inland Virginia (0.80 µg/g; Kramar
et al. 2019, D. Kramar, personal communication). As
reflected by Hg exposure in birds, the South Fork of the
Shennandoah River is among the most severely polluted
rivers in the country (Brasso and Cristol 2008; Jackson et al.
2011). The mean Hg concentration in blood of bald eagle
nestlings throughout inland (primarily central) Virginia was
0.32 µg/g (Kramar et al. 2019), the same mean concentra-
tion we found in nestlings from the rest of NY region in the
present study.

In contrast to population comparisons of Hg concentra-
tions in blood samples, mean breast feather Hg concentra-
tions in nestlings from the Delaware–Catskill region
(14.5 µg/g) were lower than those from Pinchi Lake, BC
(18.0 µg/g), lakes in the Penobscot River watershed in

Maine (19.6 µg/g), and 3 nests in the Shennandoah River in
Virginia (18.9 µg/g; D. Kramar, personal communication,
Kramar et al. 2019). Mercury concentrations in nestling
feathers from the Delaware–Catskill region were also lower
than those sampled at lakes in Voyageurs National Park in
Minnesota prior to water level stabilization in the late
1980s, a period associated with notable Hg contamination
(20.0 µg/g; Bowerman et al. 1994). Mercury concentrations
in nestling feathers from the Delaware–Catskill region were
higher than those found throughout central/interior Virginia
(8.4 µg/g; Kramar et al. 2019) and throughout the Great
Lakes region during the late 1980s (3.7–8.8 µg/g; Lakes
Superior, Michigan, Huron and Erie; interior areas in the
upper and northern lower peninsulas of Michigan; Bower-
man et al. 1994).

The mean Hg concentration in nestling feathers sampled
outside the Delaware–Catskill region in our study (rest of
NY; 7.4 µg/g), was higher than that found in several com-
parison regions, including Kabetogama Lake (1.1 µg/g;
Voyageurs N.P., Pittman et al. 2011), Lake Erie (3.7 µg/g;
Bowerman et al. 1994), Florida (3.5–4.7 µg/g; Wood et al.
1996), Namakan Lake (5.6 µg/g) and Rainy Lake (6.1 µg/g)
in Voyageurs National Park (Pittman et al. 2011), six sites
in the Upper Midwestern U.S. (2.69–6.6 µg/g; Dykstra et al.
2010, 2019) and multiple lakes with varying degrees of
natural Hg deposits used as references for Pinchi Lake in
British Columbia (7.1 µg/g).

Overall, given typical levels of variability associated
with Hg concentrations in blood (SDs range from
0.07–0.27 µg/g) and nestling breast feathers (SDs range
from 1.5–8.5 µg/g) reported in the literature (see review in
DeSorbo et al. 2018), findings in our study suggest that Hg
is elevated in bald eagles residing in portions of NYS,
particularly the Delaware–Catskill region, the Catskill Park
(Table S7), and probably discrete areas outside this region.
Mercury may be similarly elevated in other piscivores
within the Delaware–Catskill region.

Toxicological risk of Hg to bald eagles in New York
state

While numerous studies have found evidence that elevated
levels of Hg exposure are linked to a variety of adverse
effects in birds (Ackerman et al. 2016; Evers 2018), neither
adverse effect thresholds or effect concentrations have been
proposed for Hg in bald eagle blood or feathers (see recent
discussions in DeSorbo et al. 2018, Dykstra et al. 2019). Of
the published studies to date that evaluated the relationship
between Hg and reproduction in bald eagle populations
contaminated with moderate to high levels of Hg (Frenzel
1984; Anthony et al. 1993; Bowerman et al. 1994; Welch
1994; Weech et al. 2006), none detected evidence that Hg
limited reproduction (see also Dykstra et al. 2019 and
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Helander et al. 1982). In most of these studies however,
high concentrations of other contaminants (i.e, DDE, PCBs)
known to negatively affect reproduction in eagles confound
assessments of Hg effects. In a post mortem bald eagle
study, Rutkiewicz et al. (2011) reported that 14–27% of
eagle carcasses collected in the Great Lakes region (n=
135; most of them adults) were exposed to Hg at con-
centrations associated with subclinical neurological
damage, a finding similarly reported for bald eagles ana-
lyzed across 7 Canadian provinces (Scheuhammer et al.
2008; see also Weech et al. 2003). Comparisons of bald
eagle Hg exposure in the present study with those reported
elsewhere suggest that a portion of bald eagles in NYS are
likely exposed to similar or higher Hg levels to those ana-
lyzed in these neurochemical studies (DeSorbo et al. 2008;
Pittman et al. 2011; Rutkiewicz et al. 2011; Dykstra et al.
2019).

Since the majority of avian toxicological research
investigations emphasize adult and post-fledged juvenile
bird age classes to avoid influences of mass dilution and
extensive feather growth on circulating blood Hg levels,
adverse effect concentrations delineated in these studies
have limited application for interpreting of Hg concentra-
tions as measured in the present study. There are however,
several studies that detected adverse health effects of Hg in
developing nestlings with tissue concentrations in the range
of those we found in NYS bald eagle nestlings. Con-
centrations of 0.66 µg/g Hg in blood were associated with
oxidative stress, altered glutathione metabolism and
immune suppression in 5-week old common loon chicks
dosed with 0.4 µg/g Hg (Kenow et al. 2007a, 2008), while
numerous negative effects (neurological, immunological,
histological, reduced appetite, growth, activity and will-
ingness to hunt prey) were documented in juvenile great
egrets (Ardea albus) dosed with 0.5 µg/g Hg (Bouton et al.
1999; Spalding et al. 2000b, a). Past studies indicate con-
centrations of 0.4 µg/g or 0.5 µg/g Hg are environmentally
realistic in some fish species sampled at lakes throughout
NYS (NYSDEC 2005, 2006a; Simonin et al. 2009) and
these levels are associated with severe negative effects in
adult common loons (Burgess and Meyer 2008; Depew
et al. 2012). Of nesting territories in which blood samples
were collected from nestlings in the present study, 63%
(n= 10 of 16) exhibited mean blood Hg concentrations
>0.5 µg/g, and 50% were >0.66 µg/g (all but one of these 10
territories was located in the Delaware–Catskill region).
Recently fledged bald eagles exposed to high Hg prey could
be particularly vulnerable to adverse physiological and
neurological effects of Hg, as growing feathers no longer
provide a protective excretory route for Hg during this
consequential period in their development (Fournier et al.
2002; Ackerman et al. 2011). Bald eagles may have a lower
susceptibility to MeHg toxicity compared to other well-

studied avian bioindicators such as common loons due to
enhanced abilities to metabolize MeHg and Se in organs
(Norheim and Frøslle 1978; Scheuhammer et al. 2008).

The NYS bald eagle population is growing rapidly and
exhibits favorable growth and reproduction measures
(NYSDEC 2016). In 2006, the primary sampling year in the
present study, productivity and nest success for the state-
wide population were 1.55 chicks per occupied nest and
75% (percentage of occupied nests successful in hatching
≥1 chick) respectively (P. Nye, pers. comm.), well above the
generally accepted productivity level of 1.0 young per
occupied nest associated with population stability (Wie-
meyer et al. 1984). Reproduction parameters for the nests
sampled in the Delaware–Catskill region exhibited similarly
healthy productivity levels in 2006 (NYSDEC 2006b).

The role of bald eagles in future Hg monitoring in
NYS

Avian piscivores are an important component in spatial and
temporal contaminant monitoring programs. The common
loon, an obligate piscivore, has been central to Hg biomo-
nitoring programs in NYS (Schoch et al. 2014a, Yang et al.
2019). However, limitations of the current breeding range of
common loons to northern NYS (Evers et al. 2010) prevent
its use for statewide contaminants monitoring. The incor-
poration of bald eagles into existing biomonitoring efforts
would improve current efforts to investigate Hg risk to
upper trophic level wildlife across all of NYS.

Although a comprehensive statewide bald eagle survey
has not been conducted in New York since 2014 (254
occupied nesting territories; NYSDEC 2016), the number of
occupied nesting territories in 2018 has been estimated to be
383 (Nye 2009; P. Nye, unpublished data), with pairs
inhabiting all major watersheds and major river and lake
systems in the state, including the Great Lakes shorelines
(Fig. S3). Bald eagles have been central to ongoing long-
term contaminant monitoring programs in nearby regions
including the Great Lakes (Bowerman et al. 1994, 2002;
Roe 2004; Wierda 2009) and the Upper Midwestern U.S.
(Route et al. 2011, 2019; Dykstra et al. 2019). Further
investigations in NYS are recommended to better under-
stand the Hg exposure patterns observed in this study and to
track changes over time.

Conclusions

Findings presented in this study indicate that bald eagles in
portions of NYS are exposed to elevated Hg concentrations,
presumably through the consumption of Hg-contaminated
prey. Our study demonstrates that there are regional and
elevational influences on Hg exposure in bald eagles, with
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greater exposure in the Delaware-Catskill region and in
nesting territories at higher elevations. Mercury concentra-
tions in tissues of bald eagles in the Delaware–Catskill
region are comparable to or higher than those found in
populations with significant Hg pollution issues, either from
direct inputs or atmospheric deposition. It remains unclear
whether or how Hg might be affecting individual bald
eagles within the NYS population; however, any potential
effects on reproduction would appear to be insufficient in
outpacing the strong continuing recovery of the NYS
population. Additional nestling sampling is needed to
improve geographic assessments of Hg exposure initiated in
this study, particularly given known fish Hg issues else-
where in the state (i.e., Adirondacks, Hudson River; Bal-
digo et al. 2006; Levinton and Pochron 2008). Future
sampling of adult and subadult bald eagles would address a
significant datagap (especially in areas of elevated fish Hg)
and would also improve our ability to assess Hg risks in
these key age classes.
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