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Chapter 11 Highlights 
Development of a multi-species modeling framework to predict seabird densities across the study area by 
season, incorporating environmental data and distance sampling  

Context1 
A broad geographic and temporal scale of analysis is required to assess exposure to wildlife from proposed 
development projects. Unlike several chapters in Part IV of this report, which utilize approaches for 
combining boat and digital aerial survey data, this chapter focuses on using data from a single, well 
understood survey method (distance sampling), to develop a multi-species model that includes infrequently 
observed species. Distance sampling generally requires a minimum sample size of 30-60 detections in 
order to produce valid results. With the data collected in the shipboard surveys, it was common to have 
fewer than 30 observations of a single species.   

In order to estimate the abundance of those species with smaller sample sizes, project collaborators 
developed a community distance sampling (CDS) model. The technical components of the model 
development are provided in this chapter, and the model is illustrated on seabird data from a single survey 
(April 2012). This approach accounts for imperfect detection based on distance sampling, allows 
incorporation of rarely observed species through a hierarchical modeling structure, and estimates habitat 
relationships with abundance. Chapter 12 applies the model developed here to the full two years of data 
collection, and presents broader ecological findings.  

Study goal/objectives 
Develop a model that makes efficient use of the boat survey data by allowing for estimation of abundance of 
all observed species, even those with a sparse number of observations. 

Highlights 
• Successfully developed and implemented a hierarchical community distance sampling model 
• Produced estimates of abundance and covariate relationships for all 14 species considered in 

the analysis of the April 2012 boat survey 
• Created a flexible framework for analyzing all boat survey data 
• Distance to shore was a significant predictor of abundance, consistent with other findings for 

the boat data (see Chapter 12). 

Implications 
This model incorporates data from all species in to the analyses, which allows for making inferences 
about rare and infrequently observed species that would otherwise have to be discarded.  By sharing 
information across species within a defined community, habitat relationships and abundance can be 
estimated for each species. In the context of conservation and management, rare and listed species are 
often of particular interest, and the ability to incorporate rare species into analyses provides important 
information about their abundance and distribution.  

                                                           
1 For more detailed context for this chapter, please see the introduction to Part III of this report. 
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Abstract 
Distance sampling is a common survey method in wildlife studies, because it allows accounting for 
imperfect detection, a known issue when trying to estimate abundance. The framework of distance 
sampling was employed during the shipboard surveys described in Chapters 7-8. Distance sampling 
generally requires a minimum sample size of 30-80 observations in order to produce valid results. With 
the data collected in the shipboard surveys, it was common to have fewer than 30 observations of a 
single species. In order to estimate the abundance of those species with smaller sample sizes, we 
developed a new multi-species model for distance sampling. In this chapter, we describe this model and 
provide an implementation example using data from the April 2012 survey. Non-technical readers may 
choose to skip to Chapter 12, in which all marine bird data from the boat survey were analyzed, for 
ecological insights provided using this model.  

Specifically, in this chapter we develop a community distance sampling model that allows abundance to 
vary with environmental covariates. The model allows species-specific parameters, but these come from 
a common underlying distribution. This hierarchical model structure enables the incorporation of 
species with sparse data sets that would be otherwise discarded from analysis. We applied the model to 
marine bird data collected during the shipboard surveys in April 2012. The data set contained 14 species, 
out of which 10 yielded insufficient observations (< 30) for individual species models. The development 
of this new model allowed us to produce estimates of abundance and covariate relationships for all 14 
species considered in the analysis. We found a strong negative association of community and species 
abundance with distance to shore. Sea surface temperature, and prey density in the top 3-5 m of the 
water column, both measured in situ, had weak effects on marine bird abundance. The model allowed 
us to make inference about ecology of the marine bird community, including rarely observed species, 
which is particularly important in a regulatory context.  

Introduction 
The mid-Atlantic region is an extremely important area for a broad range of marine wildlife species 
throughout the year. This is due to relatively high levels of productivity, fed in part by nutrient inputs 
from Chesapeake Bay and Delaware Bay, as well as the region’s central location on the eastern edge of 
the continent and in the middle of an important migratory flyway (Chapter 1; Smith & Kemp 1995; 
Schofield et al. 2008). Seabirds species are globally more threatened (based on percent of bird species 
threatened) than comparable groups of birds, and the US ranks as a high priority area for conservation 
action based on species diversity, numbers of threatened species, and numbers endemic species present 
(Croxall et al. 2012; Sydeman et al. 2012). Current research indicates that globally monitored seabird 
populations have declined 70% over the last 60 years (Paleczny et al. 2015). Recently, the development 
of offshore wind energy facilities has raised additional concern about seabird conservation. Potential 
threats associated with the construction of offshore wind energy facilities include mortality through 
collisions, as well as displacement due to avoidance of the wind farms or the altered habitat they create 
(e.g., Garthe & Hüppop 2004; Petersen & Fox 2007). Minimizing the effects of future offshore wind 
energy development will require consideration of the distribution and abundance of seabirds across the 
area of interest, but studying these aspects of seabird ecology is challenging due to their large-scale 
movements, often clustered occurrence, and the vastness of the marine habitat in which they occur. 
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Evaluating potential impacts of environmental changes on this group is further complicated by the fact 
that seabirds comprise a diverse community of species, which are likely affected by environmental 
changes in different ways. 

The shipboard surveys conducted in this study employed a method called distance sampling (Chapter 7). 
Distance sampling (Buckland 2001; Buckland et al. 2005) is a popular method to survey both terrestrial 
and marine wildlife species amenable to direct observation. In distance sampling, the probability of 
detecting an individual is assumed to decrease with increasing distance from the observer (see Figure 
11A-1 for an example). This allows estimation of abundance and density while accounting for 
observation bias. The framework has been extended to accommodate the modeling of abundance at 
multiple survey sites as a function of site specific covariates (Hedley & Buckland 2004; Royle et al. 2004; 
Conn et al. 2012). This is also referred to as hierarchical distance sampling (HDS).   

HDS provides a framework to investigate factors governing the distribution of individual species. Often, 
however, rare or elusive species will not yield sufficient observations to parameterize an individual 
model. The framework further does not allow for exploration of community-level effects of explanatory 
covariates. Community modeling provides a unified approach towards investigating community-level 
effects while maintaining the ability to model species-specific parameters (Dorazio & Royle 2005; 
Dorazio et al. 2006). In community models, species have individual parameters, but information is 
shared across species by assuming a common underlying distribution for these parameters, which in 
turn are governed by hyperparameters. The use of collective community data allows for inference about 
community and species-level patterns and processes, even for those species that are rare and elusive. 
This concept has been applied repeatedly in occupancy modeling (i.e., species-level detection/non-
detection data, Dorazio & Royle 2005; Dorazio et al. 2006; Zipkin et al. 2009, 2010), but to our 
knowledge, no attempt has been made to combine community modeling with the framework of 
distance sampling. 

Here, we develop a community distance sampling model that estimates both community-level and 
species-level parameters related to detection and abundance. We use the model to analyze seabird data 
collected from shipboard distance sampling surveys during April 2012 (analysis of all other surveys can 
be found in Chapter 12). Our analysis includes a community of 14 species, of which ten did not yield 
sufficient observations to be analyzed individually. By sharing information across species, the 
community distance sampling approach is able to estimate covariate effects for all 14 species of 
seabirds, providing important information on seabird abundance and distribution in areas actively 
explored for their wind energy potential. The method holds promise for many distance sampling 
applications to improve estimation of detection and abundance of species and communities. 

Methods 
This section is based on developing methods in distance sampling and thus requires a fundamental 
understanding of distance sampling. For a review of distance sampling and hierarchical distance 
sampling please see Buckland 2001, Hedley & Buckland 2004, Buckland et al. 2005, Royle et al. 2004, 
and Conn et al. 2012. 
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Development of the community distance sampling model 
In distance sampling, the perpendicular distance of the object of interest to the observer is recorded 
along a transect or from a point. Detection on the transect line (or at the survey point) is assumed to be 
perfect and the detection probability of observation m is defined by a declining function f of its distance 
to the observer, dm, for example, using a half-normal detection function  

𝑝𝑝𝑚𝑚 = exp�−
𝑑𝑑𝑚𝑚2

2𝜎𝜎2
� 

Here, σ is the scale parameter of the half-normal function. In reality, observations are frequently 
grouped into k = 1, 2, … K distance categories. Let b be the K+1 break points of the K distance categories, 
and w be the width of the distance categories. Then, detection probability in k, pk, is the integral of f(x) 
over k: 

𝑝𝑝𝑘𝑘 =
∫ exp �− 𝑥𝑥2

2𝜎𝜎2� 𝑑𝑑𝑥𝑥
𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘

𝑤𝑤
 

Individuals are assumed to be uniformly distributed in space, so that the probability of an individual 
occurring in distance band k, ψk, is the proportion of the sampled area covered by k (note that in 
transect surveys with constant w, the area k is also constant across distance categories, but in point 
surveys, this area increases with increasing distance from the survey point). The vector of observations 
across all K distance categories, y, is a multinomial random variable with size 𝑛𝑛 = ∑𝑦𝑦 and cell 
probabilities π = p/Σp.  

We can link n to the true abundance N using the total detection probability p.t =∑ 𝑝𝑝𝑘𝑘𝑘𝑘 : 

𝑛𝑛~𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝. 𝑡𝑡,𝑁𝑁) 

When distance sampling surveys are carried out at j = 1, 2, ..., J survey locations, observations are 
indexed by location: 

𝑛𝑛𝑗𝑗~𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑝𝑝. 𝑡𝑡𝑗𝑗 ,𝑁𝑁𝑗𝑗�. 

Following Royle et al. (2004), we can assume Nj to follow some probability mass function f (e.g., Poisson 
or negative binomial) for N, and its expected value can be modeled as a function of covariates, X, e.g., 

𝑁𝑁𝑗𝑗~𝑓𝑓(𝜆𝜆𝑗𝑗) 

log�𝜆𝜆𝑗𝑗� = 𝛼𝛼0 + 𝛂𝛂′𝐗𝐗𝒋𝒋, 

where α0 is the intercept and α is a vector of coefficients associated with the covariates X. Analogously, 
detection parameters can be modeled as functions of site specific covariates (Marques & Buckland 
2003; Oedekoven et al. 2013); for example, for the half-normal detection function: 
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log�𝜎𝜎𝑗𝑗� = 𝛽𝛽0 + 𝛃𝛃′𝐘𝐘𝒋𝒋, 

Where β0 is the intercept, and the vector β holds the coefficients associated with the detection 
covariates in Y.  

To expand this approach to a community model for i = 1, 2, … S species, the parameters are further 
indexed by species, and we ascribe hyperdistributions to the resulting sets of parameters. For example, 
each species i has an abundance intercept 𝛼𝛼0,𝑖𝑖 such that: 

𝛼𝛼0,𝑖𝑖~𝑁𝑁𝐵𝐵𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵(𝜇𝜇𝛼𝛼0,𝜎𝜎𝛼𝛼0). 

The hyperparameters of these distributions, here μα0 and σα0, are estimated as part of the model and 
constitute the community parameters shared by all species. 

Application: seabirds off the U.S. east coast 
Seabird distance sampling data were collected along 656.1 km of boat transects located off the coast of 
Delaware and Maryland (353.2 km), and Virginia (302.9 km) (Figure 11-1), sampled over the course of 
four days in April 2012. At any given survey, observations were restricted to one side of the boat (but 
side varied among surveys) and to the quadrant defined by the line of travel and a 90-degree angle to 
this line of travel. If seabirds occurred in flocks or clusters, angle and distance to the center of the cluster 
were estimated and the cluster size was noted. Each cluster was counted as a single record, and all 
records were individually georeferenced using dLOG (R.G. Ford Consulting, Inc.), a seabird and marine 
mammal observation program that also records the ship track. Details of the boat survey protocol are 
described in Chapter 7.  

Sea surface temperature and salinity were recorded along these transects at 30-minute intervals using a 
YSI Pro30 handheld conductivity meter (YSI Inc.) with water drawn through the ship’s salt water pump. 
Sea state and visibility were also recorded at these times. In addition, hydroacoustic data were recorded 
using a 120 kHz split beam echo sounder (Simrad EK60) with the transducers affixed to the hull of the 
boat. The acoustic backscatter measured by the echo sounder can be used as an index of prey 
abundance (e.g., Gurshin et al. 2009). Echo sounding data were binned into 500-m intervals for analysis; 
due to the position of the transducers on the boat, the first two meters of the water column were not 
recorded. Echo sounding data were processed using Echoview 5.3 (Myriax Software Pty Ltd., Hobart, 
Australia). Areas of interference were removed from the data prior to integration of the signal to 
estimate biomass. 

Data preparation 
According to the observed distances, we set the maximum observation distance at 1000 m and binned 
observations into K = 10 100-m distance categories. This binning smooths inaccuracies in distance 
estimation and reduces effects of movement of birds in response to observers.  

Estimating abundance as a function of covariates from distance sampling requires spatial replication of 
surveys (Royle et al. 2004; Conn et al. 2012). To define these spatial replicates (or survey sites), we 
divided the 4 ship transects into 73 segments, using points at which environmental covariates were 
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measured in situ as cut points (Figure 11-1). The resulting segments varied in length from 1.1 to 20.5 km 
(mean: 8.99 km, SD: 2.51 km). This relatively coarse spatial resolution was necessary to ensure that 
there were in-situ measurements of the covariates of interest for all segments. We accounted for these 
differences by using segment length as an offset in the abundance component of the model.  

The survey yielded 681 records (i.e., clusters of 1 or more individuals) of 14 seabird species (defined as 
species that forage at sea). We excluded records with ambiguous species identification (6 observations) 
and observations without angle and/or distance recordings (43 observations). This may cause some 
negative bias in abundance estimates, but in the present case, this bias is likely negligible, due to the low 
number of excluded records. Records with these missing pieces of information appeared to come from 
across the range of observed species and group sizes, so we expect that the removal of these 
observations leads to equivalent levels of bias in abundance for all species, and does not bias estimates 
of group size or of covariate relationships. We discuss means of addressing missing information by 
model extension in the discussion. The final data set contained 632 records of 14 species (Table 11A-1 in 
Appendix 11A). As a rule of thumb, estimating abundance from distance sampling data requires at least 
60 to 80 observations (Buckland et al. 1993). We applied a more liberal criterion of 30 observations to 
determine whether or not a HDS model could be applied to data of an individual species; only 4 of the 
species in this data set had >30 observation. We plotted the number of detections per distance category 
for all species, both separately and combined, to investigate whether data conformed to the distance 
sampling assumption of decreasing detection with distance from the observer. We found no indication 
for violation of this assumption (Appendix 11A). 

Covariates 
We considered in situ collected temperature (TEMP, °C) and prey biomass density (PD) derived from 
echo sounding data, as well as distance to shore (DTS, km) as covariates on abundance. To define 
segment level values of TEMP and DTS, we took the mean of measurements from the start and end 
point of each segment. If a segment only had one associated measure (i.e., stretches leading up to the 
first or following the last measuring point), we used those single measurements as segment values. For 
PD, we averaged all measurements taken within a segment. Foraging depths for species in our dataset 
are likely to vary greatly with species, water clarity, water depth, and other factors. However, the 
majority of species in our dataset are visual hunters, and are likely responding to foraging cues from the 
top several meters of the water column. Therefore, we used prey density in the first 3 to 5 m of the 
water column (the first 2 m are missed by echo sounding devices). TEMP is considered an inverse proxy 
for prey availability (Hunt et al. 1981; Pinaud & Weimerskirch 2002), whereas echo sounding data gives 
a direct index of prey availability (e.g., Wiebe et al. 1990; Demer & Hewitt 1995). 

As potential covariates on the detection parameter σ we considered sea state (Beaufort values recorded 
in the survey from 1 = light air/water ripples, to 4 = moderate breeze/small waves and fairly frequent 
white caps; BEAU), visibility (categories from 1 = 300-500 m to 5 = 8000 m plus; VIS), and bird behavior 
(BEHAV; see below). For sea state and visibility, we applied the same procedure to obtain segment level 
values of the observation covariates as described above. For visibility, four segments had a value of 4, 
and all remaining segments had values of either 1 or 5. Therefore, we transformed visibility into a binary 
covariate of ‘poor’ = 1 or ‘good’ = 4 or 5. 



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

 
Part III: Examining wildlife using boat-based surveys Chapter 11 Page 6 
  

It is conceivable that detectability of birds is reduced for observers on the bridge, as compared to the 
upper deck. The observation platform was recorded with each observation and changed within 
segments. Exploratory data analysis showed, however, that close to all observations at sea state 4 were 
made from the bridge, and almost all observations at lower sea states were made from the deck, 
suggesting that by accounting for sea state we implicitly account for observation platform. To account 
for the confounding of sea state and observation platform, we included sea state as a categorical 
covariate. Finally, because observers changed within segments, it is not straightforward to include an 
observer effect on detection. All observers were experienced in conducting seabird surveys and used 
rangefinders for distance estimation. Therefore, we believe that assuming relatively homogeneous skills 
across observers is reasonable. 

Finally, birds flying might be more easily detected than birds on the water. To account for this source of 
variation in detection, we categorized bird behavior for each observation into “water adjacent” (diving, 
feeding, loafing, sitting) and “in the air” (flying, milling, following, plunge diving). 

Parameterization of the community distance sampling model for the seabird dataset 
To fit the community distance sampling model to the seabird data set, we used a negative binomial 
distribution (with mean λ ij and overdispersion parameter r) for abundance and included all abundance 
covariates in the predictor, because these describe the ecological process we are interested in. We 
included a random species-specific intercept and random species-specific coefficients for these 
covariates in the abundance component: 

𝑁𝑁𝑖𝑖𝑗𝑗~𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝑡𝑡𝐵𝐵𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜆𝜆𝑖𝑖𝑗𝑗 , 𝑁𝑁� 

log�𝜆𝜆𝑖𝑖𝑗𝑗� = 𝛼𝛼0,𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 + 𝛽𝛽2𝑖𝑖𝑇𝑇𝑃𝑃𝑗𝑗 + 𝛽𝛽3𝑖𝑖𝑃𝑃𝑇𝑇𝐷𝐷𝑗𝑗 

To limit the number of parameters in the model due to sparseness in the data, we only included one 
detection covariate at a time. We assumed that the detectability of the different species is influenced in 
a similar way by these observation covariates and therefore estimated fixed coefficients β for all species. 
Differences in detectability among species were accounted for by a random species specific intercept: 

log (𝜎𝜎𝑖𝑖𝑗𝑗) = 𝛽𝛽0,𝑖𝑖 + 𝛽𝛽𝑌𝑌𝑗𝑗 , 

where Y is either VIS, BEAU or BEHAV (note that all covariates are categorical, so that a separate β is 
estimated for each category minus the reference category, which is absorbed by the intercept). To 
accommodate BEHAV, which is an observation-level (as opposed to environmental, segment-level) 
covariate, we estimated abundance for the two behavioral categories b using behavior-specific 
intercepts, α0,i,b, in the abundance model. This analysis also allows insight into which species are found 
near the water surface and which are more likely to be encountered in flight. We looked at effect 
strengths (Royle & Dorazio 2008) to choose among detection covariates: if the posterior distribution of a 
given β strongly overlapped 0, we concluded that it was not an important covariate. We based inference 
on seabird abundance and distribution on a final model that contains all abundance covariates and 
those covariates on detection deemed influential. 
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Accounting for clusters of birds 
Seabirds are often observed in clusters. In this case, individuals are not observed independently, and 
clusters should be used as the unit of observation, so that Nij is the estimated number of clusters of 
species i at site j. To get an estimate of total abundance, we augmented the above described community 
distance sampling model with a component describing cluster size of observation m, Cm, to be a zero-
truncated negative binomial variable, with a mean and dispersion parameter shared by all species: 

𝐶𝐶𝑚𝑚~𝑧𝑧𝑡𝑡 𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝑡𝑡𝐵𝐵𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜇𝜇𝐶𝐶 ,𝜌𝜌) 

Note that Cm is partially observed, i.e., known for observed clusters and unknown for Nij – nij 
unobserved clusters. Although it might seem biologically more appropriate to have a species-specific 
mean cluster size, 74% of all observations were of single individuals; 95% of all observations were of 4 or 
less individuals. We therefore decided against the additional complexity of a species-specific cluster size 
model. Because cluster size was predominantly small, we also refrained from adding it into the 
observation model as a covariate, but see the discussion for suggestions of how to include cluster size as 
a detection covariate. We calculated total abundance for a species at a site as the sum of all clusters – 
observed and estimated - for that species at that site, and total abundance in the survey area by 
summing over all (observed and estimated) clusters across all sites. The survey area is equivalent to a 
1000-m strip along the combined boat transects. 

Model fit 
We tested model fit using Bayesian p-values (Gelman et al. 1996). These values are obtained by 
calculating some fit statistic (e.g., a residual) that depends on the model parameters and the observed 
data, determining the same fit statistic for a new set of data generated from the model under 
consideration, and then calculating the portion of time the residuals from the newly generated data are 
larger (or smaller) than those of the original data. If the model fits the data appropriately, the resulting 
Bayesian p-value will be close to 0.5. We used Freeman-Tukey residuals, R, of the general form 

𝑅𝑅(𝐲𝐲,𝜽𝜽) = ���𝑦𝑦 − �𝑇𝑇(𝑦𝑦)�
2

, 

where 𝐲𝐲 is a collection of data, θ are the parameters of the model describing 𝒚𝒚 and E(𝒚𝒚) is the expected 
value of 𝒚𝒚.  

Hierarchical models consist of several components, each of which can be evaluated for model fit. We 
calculated R and associated Bayesian p-values for the species and site-specific abundances, Nij, to assess 
fit of the abundance component; for the observations y to assess fit of the observation component; and 
cluster size C to assess fit of the cluster size component. Note that all Nij are latent and subject to the 
specific assumptions of the distribution they are simulated from. It may therefore be more appropriate 
to use number of individuals observed at each site (generated from the model as Nij * p.tj) to evaluate 
fit of the abundance model based on observed data. This, however, confounds the detection and 
abundance models. In the present case, using Nij directly allowed us to determine that a Negative 
Binomial distribution provided a better fit that than a Poisson distribution. Formulas for residuals and 
associated Bayesian p-values are listed in Appendix 11C. 
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Implementation 
We implemented the community distance sampling model in a Bayesian framework using the software 
JAGS (Plummer 2003) accessed through R version 2.15.2 (R Core Team 2014). We ran three parallel 
Markov chains started at different initial values with a burn-in of 1,000 iterations and 50,000 post burn-
in iterations. Because of the large number of parameters to be monitored, we thinned chains by 20 to 
reduce the size of the model output. We tested for chain convergence using the Gelman-Rubin statistic 
(Gelman et al. 2004). This statistic is a measure of among-chain versus between chain variance, and 
values < 1.1 indicate convergence. We report results as posterior means and standard deviations, as well 
as 2.5 and 97.5 percentiles, which represent the Bayesian equivalent to 95% Confidence Intervals 
(95BCI). We consider covariate effects as strong/significant if their 95% BCI do not overlap 0. Posterior 
distributions of total abundance estimates across all sites for the less abundant species tended to be 
right-skewed. Therefore, we provide the mode in addition to the mean in our summary statistic for 
species level abundances. 

Results 
The community distance sampling model provided estimates of abundance of 14 seabird species, and 
identified covariates influencing their detectability and distribution. Neither visibility (β = 0.015 ± 0.075, 
95BCI: -0.136, 0.161) nor behavior (β = 0.089 ± 0.068, 95BCI: -0.043, 0.222) had a strong effect on 
detectability (Table 11B-1 and Table 11B-5 in Appendix 11B), but sea states 3 and 4 had a strong 
negative effect on detectability of seabirds, relative to sea state 1 (Figure 11-3, panel B, Table 11B-3 in 
Appendix 11B). Therefore, we considered the model with TEMP, DTS and PD as covariates on 
abundance, a species-specific intercept for the detection parameter σ, and sea state as detection 
covariate as our final model and present results from this model only. Detailed results of all models can 
be found in Appendix 11B. According to the Bayesian p-values, the community distance sampling model 
fit the seabird data appropriately (Appendix 11C). 

Distance to shore had a strong negative effect on seabird abundance across the entire community, with 
a mean, μα1, of -0.999 ± 0.252 (Table 11B-3 in Appendix 11B). The effect was significantly negative for all 
but five species; for Surf Scoters, Lesser Black-backed Gull, Laughing Gulls, Herring Gulls and Forster’s 
Terns the effect was negative but credible intervals overlapped 0 (Figure 11-2, panel A). Although the 
mean effect of sea surface temperature on the seabird community was negligible at -0.001 ± 0.170 
(Table 11B-3 in Appendix 11B), it had a significantly positive effect on two species (Royal Tern, Common 
Tern; Figure 11-2B in Appendix 11B). The community mean effect of prey density was similarly weak (-
0.018 ± 0.159) and was non-significant for all species (Table 11B-3 in Appendix 11B, Figure 11-2, panel 
C). 

The mean detection parameter across species, μβ0, was 216.269 ± 21.104 m at sea state = 1 and 
declined to 159.415 ± 18.680 m at sea state = 4 (Figure 11-3, panel B). Among species, σ at sea state = 1 
varied between 183.943 and 271.566 m (Figure 11-3, panel A). Mean cluster size for all species was 
1.927 ± 0.107 individuals; the overdispersion parameter for the negative binomial cluster size model was 
0.145 ± 0.016. Total abundance across all survey sites was highest for Common Loons (mode = 1677) 
and lowest for Forster’s Terns and Surf Scoters (mode = 2) (Table 11B-4 in Appendix 11B). 
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Discussion 
The framework of community modeling so far has been applied mostly within occupancy models (Zipkin 
et al. 2009, 2010). We developed a community distance sampling model and used it to estimate 
relationships between abundance and environmental covariates for 14 species of seabirds, out of which 
only four species had enough observations to be modeled independently. Sharing information across 
ecologically similar species allows us to draw inferences about rare species, which are often of particular 
conservation concern. 

Although information is shared by modeling covariate relationships of all species as coming from a 
common underlying distribution, there is still flexibility for species to have distinct covariate 
relationships. The community mean effect of TEMP on abundance, for instance, was close to 0 (Table 
11B-3), yet TEMP had a significantly positive effect on abundance for two species (Figure 11-2, panel B). 
Similarly, the detection parameter σ showed some variation across species, and Northern Gannets had a 
significantly larger σ than the community average (Figure 11-3, panel A). This can be explained by the 
species’ large size and predominantly bright white plumage, making it easily visible across longer 
distances. 

Seabird abundance and distribution 
Common Loon, Northern Gannet and Laughing Gull had the highest estimated abundances in the study 
area (here, meaning a 1000-m strip along the ship transects). Laughing Gulls are generally common in 
the region at this time of year (Burger 2015), as are Northern Gannets, which leave for breeding grounds 
in the north later in the spring (Mowbray 2002), and Common Loons, which winter in the study area and 
tend to leave between March and June (Evers et al. 2010). In contrast, Surf Scoters and Forster’s Terns 
were extremely rare during the April survey. Surf Scoters winter off the east coast of the US, but by April 
have mostly begun migrating to breeding grounds further north (Savard et al. 1998). Forster’s Terns, on 
the other hand, are present year round (McNicholl et al. 2001), but stay very close to the shore and are 
therefore rare in the offshore community surveyed in the present study. 

Abundance of all species decreased with increasing distance to shore (Figure 11-2, panel A), which can 
be a limiting factor for foraging activities (Weimerskirch 2007; Fauchald 2009). In addition, we expect 
DTS to correlate positively with ocean depth. Bathymetry has repeatedly been shown to be an 
important predictor of seabird foraging activity and abundance (e.g., Freeman et al. 2010; Nur et al. 
2011), and the negative effect of DTS may be the result of seabirds actually responding to bathymetry.   

Seabirds are top predators, and we expected a positive relationship with PD and an inverse relationship 
with TEMP (Hunt et al. 1981; Pinaud & Weimerskirch 2002). Contrary to our expectation, we observed 
mostly very weak effects of TEMP and PD on the abundance of seabird species (Figure 11-2, panels B 
and C). Lower sea surface temperatures are generally associated with higher primary productivity. There 
are, however, several intermediate trophic levels between primary production and top marine 
predators like seabirds (Barnes & Hughes 1988), which can lead to spatio-temporal lags in the response 
of seabirds to changes in these covariates.  
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It is also conceivable that the in-situ measures of PD and TEMP, taken immediately under the boat, do 
not adequately represent the environmental conditions in the 1000-m strip sampled. At an average 
resolution of approximately 10 km (i.e., the average lengths of transect segments), our study 
corresponds to a coarse-scale evaluation of factors driving seabird abundance (Haury et al. 1978; Hunt & 
Schneider 1987). At increasing spatial scales, temporal lags in the response of seabirds to environmental 
characteristics become more pronounced (Wiens 1989), and in situ measures cannot accommodate 
such lags. This indicates a need to determine the adequate spatial and temporal scale at which 
explanatory covariates are measured. A comparison of model fit between remote sensed data of 
different spatio-temporal scales and of in situ data could provide interesting insight for optimized choice 
of covariates. 

Modeling detection probability 
Neither visibility nor whether birds were observed on the water or in the air (“behavior model”) had a 
significant impact on detection distances of seabirds. In order to maintain reasonable sample sizes, we 
felt we could not subdivide observations into more than two behavioral classes. This coarse grouping 
may blur detection effects associated with certain behaviors. In spite of these ambiguities, we believe 
that the conceptual set-up of the “behavior” model allows for some interesting ecological insight into 
the percentage of individuals in a population performing certain behaviors. The approach of estimating 
abundance separately for two behavioral categories circumvents the issue of unknown behavioral 
category of unobserved individuals/clusters, but likely performs poorly with an increasing number of 
categories (due to low sample size per category), and breaks down completely for continuous individual 
covariates. In these cases, a different approach is to treat individual covariates of unobserved clusters as 
missing data, and specify a parametric model to estimate missing covariate values (e.g., Conn et al. 
2014), which is equivalent to how the present model deals with cluster size of unobserved seabirds (see 
Accounting for clusters of birds). 

Diving behavior makes birds unavailable for detection while under water, and failure to take into 
account availability <1 will lead to negative bias in abundance estimates. Availability can be estimated 
separately, for example from intensive observation studies or telemetry studies that allow inference on 
animal behavior (e.g., Diefenbach et al. 2007; Conn et al. 2014), and can be incorporated into the 
estimator of abundance (Buckland 2001) so that Eq. 1 becomes 

𝑛𝑛𝑖𝑖𝑗𝑗~𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑝𝑝. 𝑡𝑡𝑖𝑖𝑗𝑗 ,𝑁𝑁. 𝐵𝐵𝑖𝑖𝑗𝑗�. 

Here, N.aij is the number of individuals of species i at site j that are available for detection, p.tij is the 
total detection probability, and 

𝑁𝑁𝑖𝑖𝑗𝑗 =
𝑁𝑁.𝐵𝐵𝑖𝑖𝑗𝑗
𝑝𝑝. 𝐵𝐵𝑖𝑖𝑗𝑗

, 

where p.aij is the probability of being available, which can be species and site-specific. 
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Uncertainty about these estimates could readily be incorporated by treating availability as a parameter, 
rather than fixing it, and formulating an informative prior based on available information.    

We did not explore differences in observer skills because the observer changed within a transect but 
time of change was not noted. If information was collected about where/when during the transect 
conditions changed, the detection parameter σ could be modeled as a weighted mean of observer-
specific σ for each transect, considering which proportion of the transect was covered by each observer.  

Finally, we did not include cluster size of birds as an explanatory covariate in the detection model 
because the present data set contained predominantly small clusters. This situation is not necessarily 
representative: many studies report occasional observations of large aggregations of seabirds. In these 
situations, the effect of cluster size on detectability (e.g., Smith et al. 1995; Pearse et al. 2008) should be 
considered. Observed cluster size can easily be included as a covariate on the log-linear predictor of σ. 
Further, different parameterizations of the cluster size model itself, for example in the form of species-
specific means or distributions allowing for more variability in counts, may be required to adequately 
describe the observed data (Zipkin et al. 2014). 

Missing individual covariate values 
In the present case, we excluded observations with uncertain species identification and/or missing 
distance-to-transect information. Rather than excluding such incomplete observations, which can 
negatively bias abundance estimates, species identity and distance can be viewed as missing individual 
covariates, which can readily be accommodated in a Bayesian framework. The present model could be 
augmented with a species identification model as developed by Conn et al. (2013, 2014). Here, species 
identity is treated as a latent variable with a multinomial distribution. Knowledge about the species-
specific identification probabilities (e.g., from double-observer surveys or experiments with known 
species identity) can be used to formulate informative priors on these multinomial cell probabilities 
(with vague priors, unidentified observations will be distributed among species according to their 
proportion in the identified observations). Missing distances are naturally sampled from the multinomial 
model (for the present case of discrete distance bins) specified for the observations y (see Development 
of the community distance sampling model) if it is reasonable to assume that the probability of not 
recording a distance occurs at random across distance bins. Otherwise, additional information about this 
process would be necessary. 

Distance sampling is employed in the study of a variety of taxa, and often, data on multiple species are 
collected (Jathanna et al. 2003; Somershoe et al. 2006; Williams & Thomas 2007). The present approach 
allows such studies to investigate community ecology and distribution of many species from within a 
flexible and coherent modeling framework. In the context of conservation and management, rare and 
listed species are often of particular interest, and the ability to incorporate rare species into analyses 
provides important information about their abundance and distribution. 
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Figures 
 

 

Figure 11-1. Boat distance sampling transects implemented in April 2012 to survey seabirds, subdivided into 73 segments (x); 
inset map shows approximate location of the study area in the U.S.A.  
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Figure 11-2. Species specific effects of distance to shore (A), sea surface temperature (B) and prey density in the first 3-5 m of 
the water column (C) on seabird abundance, estimated from shipboard surveys off the coast of Delaware, Maryland and 
Virginia, using a community distance sampling model. Red bars indicate species with effects significantly different from 0. 
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Figure 11-3. Species specific detection parameters, σ, with vertical line representing community mean (A), and community 
mean σ (with posterior standard deviation) as a function of sea state (B). For full species names, see Figure 2. 
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Supplementary material 

Appendix 11A. Histograms of counts across distance classes 
We plotted histograms of detection distance categories for data of all 14 seabird species (Table 11A-1), 
first combined (Figure 11A-1) and then for each species separately, to check for deviation from the 
prerequisite that detections decrease with distance (see main text for description of data set). Five 
species did not have the highest number of detections in the lowest distance category, but four of these 
species only had 1 – 3 records, so that these patterns likely arose by chance. The Red-throated Loon 
(Figure 11A-2) had 13 records spread across the first four distance categories without discernable 
pattern. This could be a spurious pattern due to low sample size, or indicate a wider shoulder in the 
detection function of this species. Since there was no strong indication of increasing detection with 
distance, evasive movements (a clear maximum at >1), or a multimodal detection function, we conclude 
that application of the half-normal model for detection was appropriate. 

 

Table 11A-1. Seabird species (common name, Latin name and four-letter code used in future tables and figures) and number 
of records (clusters) used in the present community distance sampling model; data collected during shipboard surveys off 
the coast of Virginia, Delaware and Maryland in April 2012. 

Common name Latin name Code Number of records 
Bonaparte's Gull Larus philadelphia BOGU 11 
Common Loon Gavia immer COLO 282 
Common Tern Sterna hirundo COTE 13 
Double-crested Cormorant Phalacrocorax auritus DCCO 3 
Forster's Tern Sterna forsteri FOTE 1 
Great Black-backed Gull Larus marinus GBBG 6 
Herring Gull Larus argentatus HERG 31 
Laughing Gull Larus atricilla LAGU 91 
Lesser Black-backed Gull Larus fuscus LBBG 3 
Northern Gannet Morus bassanus NOGA 145 
Parasitic Jaeger Stercorarius parasiticus PAJA 9 
Royal Tern Sterna maxima ROYT 23 
Red-throated Loon Gavia stellata RTLO 13 
Surf Scoter Melanitta perspicillata SUSC 1 
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Figure 11A-1. Histogram of observations in each distance class across all species and survey sites. Each distance category is 
100m in length.  



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

 
Part III: Examining wildlife using boat-based surveys Chapter 11 Page 21 
  

 

Figure 11A-2. Histogram of observations per distance class for Red-throated Loons. No observations were made in distance 
classes 5 – 10. 

  



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

 
Part III: Examining wildlife using boat-based surveys Chapter 11 Page 22 
  

Appendix 11B. Additional model results 
We ran several community distance sampling models on the seabird data set (see main text for model 
and data set description), all of which included distance to shore (DS), sea surface temperature 
measured in situ (TEMP), and prey biomass density (PD) as covariates on abundance. The models 
differed in the detection covariates: visibility (VIS, binary, good or poor), Beaufort (BEAU, categorical, 1-
4) or behavior (BEHAV, binary, on water or flying). Main results of the model including BEAU are 
presented in the main text. Detailed results of all models are summarized here. 

Visibility as a covariate 
Table 11B-1. Posterior summaries for community parameters (on log scale) from a community distance sampling model with 
visibility (1 = poor, 2 = good) as observation covariate, fitted to seabird observations collected off the shore of Maryland, 
Delaware and Virginia, USA. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles. DTS = Distance to 
shore, TEMP = sea surface temperature, PD = prey biomass density. 

Component Term Mean SD 2.5% 97.5% 
Abundance Intercept mean*; μα0 -3.135 0.574 -4.309 -2.028 
 Intercept SD*; σα0 1.978 0.469 1.279 3.099 
 DTS, mean*; μα1 -1.000 0.253 -1.538 -0.538 
 DTS, SD*; σα1 0.694 0.210 0.379 1.196 
 TEMP, mean*; μα2 -0.018 0.175 -0.393 0.305 
 TEMP, SD*; σα2 0.474 0.162 0.233 0.860 
 PD, mean*; μα3 -0.006 0.158 -0.336 0.291 
 PD, SD*; σα3 0.378 0.145 0.181 0.736 
 Negative binomial 

overdispersion; rN 0.982 0.170 0.702 1.368 

Detection Intercept mean*; μβ0 5.319 0.164 5.001 5.647 
 Intercept SD*; σβ0 0.230 0.094 0.090 0.456 
 Visibility 2; β1 0.015 0.075 -0.136 0.161 
Cluster size Mean, μC 1.926 0.107 1.738 2.157 
 Negative binomial 

overdispersion; ρ 0.145 0.016 0.116 0.177 

* Hyperparameters for random effects across species 
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Table 11B-2. Posterior summaries for abundance of 14 seabird species within a 1000-m strip along 73 shipboard transect 
segments surveyed off the coast of Maryland, Delaware and Virginia, estimated using a community hierarchical distance 
sampling model with visibility as observation covariate. See Table 1 for full species names and scientific names. 

Species Mean SD Mode 2.5% 97.5% 
BOGU 91.365 33.394 77 43 171 
COLO 1669.878 149.845 1631 1400 1987 
COTE 141.090 47.837 119 72 257 
DCCO 26.683 13.783 15 11 62 
FOTE 10.085 10.364 1 1 38 
GBBG 39.993 21.047 29 12 92 
HERG 244.930 62.098 224 143 384 
LAGU 573.472 88.748 547 418 764 
LBBG 24.783 18.044 10 4 71 
NOGA 1003.751 91.133 981 842 1198 
PAJA 52.309 23.169 40 19 108 
ROYT 174.250 44.400 163 103 275 
RTLO 79.278 29.604 67 34 149 
SUSC 10.231 10.508 1 1 39 

 

Beaufort sea state as a covariate 
Table 11B-3. Posterior summaries for community parameters (on log scale) from a community distance sampling model 
fitted to seabird observations collected off the shore of Maryland, Delaware and Virginia, USA. SD is the standard deviation, 
2.5% and 97.5% are the respective quantiles. DTS = Distance to shore, TEMP = sea surface temperature, PD = prey biomass 
density, BEAU = Beaufort sea state. 

Component Term Mean SD 2.5% 97.5% 
Abundance Intercept mean*; μα0 -3.122 0.572 -4.271 -2.036 
 Intercept SD*; σα0 1.980 0.474 1.286 3.119 
 DTS, mean*; μα1 -0.999 0.252 -1.538 -0.533 
 DTS, SD*; σα1 0.698 0.210 0.383 1.185 
 TEMP, mean*; μα2 -0.001 0.170 -0.369 0.310 
 TEMP, SD*; σα2 0.462 0.159 0.228 0.844 
 PD, mean*; μα3 -0.018 0.159 -0.349 0.286 
 PD, SD*; σα3 0.376 0.144 0.179 0.739 
 Negative binomial 

overdispersion; rN 1.111 0.203 0.777 1.574 

Detection Intercept mean*; μβ0 5.372 0.098 5.172 5.558 
 Intercept SD*; σβ0 0.183 0.082 0.060 0.379 
 BEAU = 2; β1 0.104 0.074 -0.043 0.250 
 BEAU = 3; β2 -0.278 0.089 -0.452 -0.106 
 BEAU = 4; β3 -0.307 0.119 -0.541 -0.068 
Cluster size Mean, μC 1.927 0.107 1.739 2.155 
 Negative binomial 

overdispersion; ρ 0.145 0.016 0.116 0.177 

* Hyperparameters for random effects across species 

 



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

 
Part III: Examining wildlife using boat-based surveys Chapter 11 Page 24 
  

Table 11B-4. Posterior summaries for abundance of 14 seabird species within a 1000-m strip along 73 shipboard transect 
segments surveyed off the coast of Maryland, Delaware and Virginia, estimated using a community hierarchical distance 
sampling model. See Table A1 for full species names and scientific names. 

Species Mean SD Mode 2.5% 97.5% 
BOGU 89.744 31.980 74 43 166 
COLO 1739.703 155.662 1677 1460 2071 
COTE 132.217 42.760 118 70 235.525 
DCCO 28.214 14.704 17 11 66.525 
FOTE 10.307 10.550 2 1 39 
GBBG 40.968 21.026 29 12 92 
HERG 229.144 57.698 225 135 357 
LAGU 607.911 93.989 540 443 813 
LBBG 24.517 17.211 11 4 68 
NOGA 1039.370 96.975 1029 867 1244.525 
PAJA 55.882 24.107 44 21 114 
ROYT 183.932 46.341 168 109 286.525 
RTLO 83.124 30.262 71 37 155 
SUSC 10.461 10.455 2 1 40 

 

Behavior as a covariate 
Table 11B-5. Posterior summaries for community parameters (on log scale) from a community distance sampling model with 
behavior (on the water = 1, flying = 2) as observation covariate, fitted to seabird observations collected off the shore of 
Maryland, Delaware and Virginia, USA. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles. DTS = 
Distance to shore, TEMP = sea surface temperature, PD = prey biomass density. 

Component Term Mean SD 2.5% 97.5% 
Abundance Intercept mean, behavior = 

1*; μα0,1 -4.439 0.636 -5.781 -3.251 
 Intercept SD,    behavior = 

1*; σα0,1 2.053 0.548 1.265 3.379 
 Intercept mean, behavior = 

2*; μα0,2 -3.456 0.529 -4.544 -2.445 
 Intercept SD,    behavior = 

2*; σα0,2 1.792 0.433 1.144 2.821 
 DTS, mean*; μα1 -0.925 0.233 -1.411 -0.494 
 DTS, SD*; σα1 0.659 0.192 0.371 1.112 
 TEMP, mean*; μα2 -0.011 0.165 -0.365 0.292 
 TEMP, SD*; σα2 0.456 0.152 0.227 0.816 
 PD, mean*; μα3 -0.020 0.156 -0.344 0.275 
 PD, SD*; σα3 0.382 0.139 0.187 0.724 
 Negative binomial 

overdispersion; rN 0.765 0.118 0.565 1.025 
Detection Intercept mean*; μβ0 5.265 0.111 5.033 5.471 
 Intercept SD*; σβ0 0.255 0.097 0.108 0.487 
 Behavior 2; β1 0.089 0.068 -0.043 0.222 
Cluster size Mean, μC 1.925 0.107 1.738 2.154 
 Negative binomial 

overdispersion; ρ 0.145 0.016 0.116 0.177 
* Hyperparameters for random effects across species 
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Table 11B-6. Posterior summaries for abundance of 14 seabird species within a 1000-m strip along 73 shipboard transect 
segments surveyed off the coast of Maryland, Delaware and Virginia, estimated using a community hierarchical distance 
sampling model with behavior (on the water or flying) as observation covariate. See Table 11A-1 for full species names and 
scientific names. 

Species Mean SD Mode 2.5% 97.5% 
BOGU 93.807 34.199 80 44 175 
COLO 1670.765 150.078 1639 1401 1989 
COTE 146.834 50.097 127 74 267 
DCCO 29.537 15.110 19 12 68 
FOTE 13.837 12.471 3 1 47 
GBBG 42.777 22.378 32 13 98 
HERG 246.100 62.362 228 144 386 
LAGU 570.500 88.346 567 416 761 
LBBG 28.785 19.987 15 5 80 
NOGA 991.598 89.640 972 832 1183 
PAJA 53.558 23.281 44 20 109 
ROYT 172.406 43.738 160 102 271 
RTLO 80.392 29.707 68 35 150 
SUSC 14.050 12.708 3 1 48 

 

Table 11B-7. Percent of individuals estimated to be on the water, as opposed to flying, for 14 seabird species sampled along 
73 shipboard transect segments off the coast of Maryland, Delaware and Virginia, estimated using a community hierarchical 
distance sampling model with behavior as observation covariate. See Table 11A-1 for full species names and scientific names. 

Species Mean SD 2.50% 97.50% 
BOGU 0.295 0.137 0.078 0.597 
COLO 0.773 0.044 0.679 0.850 
COTE 0.164 0.102 0.027 0.414 
DCCO 0.374 0.211 0.046 0.810 
FOTE 0.281 0.232 0.006 0.817 
GBBG 0.347 0.173 0.071 0.718 
HERG 0.070 0.046 0.011 0.186 
LAGU 0.092 0.036 0.037 0.176 
LBBG 0.352 0.209 0.039 0.797 
NOGA 0.310 0.064 0.195 0.445 
PAJA 0.554 0.159 0.240 0.840 
ROYT 0.322 0.111 0.133 0.559 
RTLO 0.334 0.134 0.109 0.620 
SUSC 0.286 0.233 0.006 0.822 
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Figure 11B-1. Percent of species population on water (as opposed to in the air), from behavioral model. Red bars indicate a 
percentage on water significantly different than 50%. 
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Appendix 11C. Model residuals and Bayesian p-values for the community distance sampling 
model 
We assessed model fit using Bayesian p-values. For the calculation of the Bayesian p-value we used 
Freeman-Tukey residuals, R, of the general form 

𝑅𝑅(𝐲𝐲,𝜽𝜽) = ���𝑦𝑦 − �𝑇𝑇(𝑦𝑦)�
2

, 

where 𝐲𝐲 is a collection of data, θ are the parameters of the model describing 𝒚𝒚 and E(𝒚𝒚) is the expected 
value of 𝒚𝒚. We calculated these residuals for the observed data and a new data set generated from the 
model under consideration. The Bayesian p-value is the percentage of time the residuals from the newly 
generated data are larger (or smaller) than those of the original data. We used this procedure to decide 
between a Poisson and a negative binomial distribution in the abundance component of the model 
(Table C1). For the community distance sampling model with the final set of covariates, we used this 
procedure to test fit of the three model components (see below; Table C2). 

Abundance residuals 
Abundance N is estimated for each species i at each site j. We generated a new set of abundances from 
the model under consideration: 

𝑁𝑁.𝑛𝑛𝑁𝑁𝑤𝑤𝑖𝑖𝑗𝑗~𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝑛𝑛(𝜆𝜆𝑖𝑖𝑗𝑗, 𝑁𝑁) 

log (𝜆𝜆𝑖𝑖𝑗𝑗) = 𝛼𝛼0,𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑃𝑃𝐷𝐷 + 𝛽𝛽2𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽3𝑖𝑖𝑇𝑇𝑃𝑃, 

where DS = distance to shore, TEMP = sea surface temperature measure in situ, and PD = prey biomass 
density derived from echo sounding.  

We calculated residuals R (for Nij) and R.n (for N.newij) at each iteration t of the Markov chain as 

𝑅𝑅 = ��(�𝑁𝑁𝑖𝑖𝑗𝑗 − �𝜆𝜆𝑖𝑖𝑗𝑗)2
𝑗𝑗𝑖𝑖

 

𝑅𝑅.𝑛𝑛 = ��(�𝑁𝑁.𝑛𝑛𝑁𝑁𝑤𝑤𝑖𝑖𝑗𝑗 − �𝜆𝜆𝑖𝑖𝑗𝑗)2
𝑗𝑗𝑖𝑖

. 

We calculated the Bayesian p-value as  

𝑝𝑝 = �𝑅𝑅.𝑛𝑛 > 𝑅𝑅.
𝑡𝑡
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Observation model residuals 
In the Bayesian implementation of the model, we use a categorical distribution on the distance classes k 
of each individual observation m, rather than a multinomial distribution on the counts per distance 
class. We generated a new set of distances classes, k.new: 

𝑘𝑘.𝑛𝑛𝑁𝑁𝑤𝑤𝑚𝑚~𝐶𝐶𝐵𝐵𝑡𝑡𝑁𝑁𝑁𝑁𝐵𝐵𝑁𝑁𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵(𝛑𝛑) 

𝛑𝛑 =
𝐩𝐩

∑ 𝑝𝑝𝑘𝑘𝑘𝑘
, 

where pk is defined by the half-normal detection function as described in the main text, and the 
detection parameter σ is modeled as a function of species and sea state BEAU. 

We calculated residuals R (for km) and R.n (for k.newm) at each iteration t of the Markov chain as 

𝑅𝑅 = ��1 −�𝑝𝑝𝑘𝑘�
2

𝑚𝑚

 

𝑅𝑅.𝑛𝑛 = ��1 −�𝑝𝑝𝑘𝑘.𝑛𝑛𝑛𝑛𝑛𝑛�
2

𝑚𝑚

 

We calculated the Bayesian p-value as  

𝑝𝑝 = �𝑅𝑅.𝑛𝑛 > 𝑅𝑅
𝑡𝑡

. 

 

Cluster size model residuals 
Cluster size c is estimated for each observation m. We generated a new set of cluster sizes, c.new, as 

𝐶𝐶𝑚𝑚~𝑧𝑧𝑁𝑁𝑁𝑁𝐵𝐵𝑡𝑡𝑁𝑁𝑧𝑧𝑛𝑛𝐶𝐶𝐵𝐵𝑡𝑡𝑁𝑁𝑑𝑑 𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝑛𝑛(𝛾𝛾,𝜌𝜌) 

We calculated residuals R (for cm) and R.n (for c.newm) at each iteration t of the Markov chain as 

 

𝑅𝑅 = ���𝐶𝐶𝑚𝑚 − �𝛾𝛾�
2

𝑚𝑚

 

𝑅𝑅.𝑛𝑛 = ���𝐶𝐶.𝑛𝑛𝑁𝑁𝑤𝑤𝑚𝑚 −�𝛾𝛾�
2

𝑚𝑚

 

We calculated the Bayesian p-value as  
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𝑝𝑝 = �𝑅𝑅.𝑛𝑛 > 𝑅𝑅
𝑡𝑡

. 

 

Table 11C-1. Bayesian p-values for a community distance sampling model for seabirds without detection covariates using a 
Poisson and a negative binomial model to describe variation in abundance across sampling sites. Values close to 0.5 indicate 
good model fit.  

Model component 
p-value 

Poisson Negative binomial 
Abundance 0.013 0.379 
Detection 0.574 0.568 

Cluster size 0.587 0.579 
 

Table 11C-2. Bayesian p-values for the final community distance sampling model (see main text for model parameterization) 
for seabirds. Values close to 0.5 indicate good model fit.  

Model component p-value 
Abundance 0.462 
Detection 0.613 

Cluster size 0.582 
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