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Chapter 19 Highlights 
Developing an integrated model of marine bird distributions with environmental covariates using boat and 
digital video aerial survey data 

Context1 
A broad geographic and temporal scale of analysis is required to assess exposure to wildlife from proposed 
development projects. In this study, data were collected via traditional methods (boat-based distance 
sampling) and with newer technologies (high definition videography) with the intention of addressing similar 
questions related to marine wildlife abundance and distribution. Chapter 18 explored the two datasets to 
determine if similar patterns were detected by each sampling method. Based on those results, Chapter 19 
aims to develop a method of integrating these two datasets into a combined approach that makes use of the 
strengths of each survey type, to produce a single prediction of marine bird abundance and distribution.  

In this approach, predictions of marine bird abundance and distribution are jointly informed by aerial 
surveys, which encompassed a large geographic area, and boat surveys, which allowed for estimation of 
detection probability. We analyze data from the same four species groups as Chapter 18 (terns, alcids, 
loons, and Northern Gannets), and incorporate remotely collected environmental covariate data into the 
hierarchical modeling structure. This approach accounts for imperfect detection to estimate “true” 
abundance, and predicts marine bird distributions to help identify important habitat use areas and patterns. 

Study goal/objectives 
Evaluate potential exposure of the marine bird community to offshore development by: (1) developing a 
model to integrate data from the two survey platforms; and (2) producing a single prediction of abundance 
and distribution to identify ecological drivers of distribution, abundance, and local hotspots. 

Highlights 
• Distance to shore was generally the most common predictor of abundance, as was found in 

Chapters 12 and 18. 
• Integrated models predicted species-specific hotspots that generally concurred with Chapters 12 

and Chapter 17, with terns largely distributed along near shore habitats, alcids distributed 
across large areas of the study area, loon hotspots near the mouth of the Chesapeake Bay, and 
Northern Gannet hotspots consisting of large, localized aggregations.  

• Integrated models improved the identification of abundance hotspots (and areas of lower than 
expected abundance) within a survey period, but further work is required to explore their 
predictive ability across surveys. 

Implications 
Developing new approaches to jointly model disparate datasets can improve identification of important 
habitat use areas, while also providing a framework to combine historical and new sources of data.

                                                           
1 For more detailed context for this chapter, please see the introduction to Part IV of this report. 
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Abstract 
We investigated an approach to combine shipboard and digital video aerial survey data for marine birds 
to produce a single prediction of marine bird abundance and distribution. Modeling frameworks were 
similar to those in other chapters (for example, the boat survey data are modeled similarly to Chapters 
11, 12, and 18, but with single species instead of a community), but we aimed to create a method for 
integrating the boat and aerial datasets. Our approach in this chapter creates a covariate based on the 
data from the digital video aerial surveys to be included as a predictor variable in the boat surveys. We 
compare models with and without the aerial covariate and evaluate the model performance. As in 
Chapter 18, we focused on terns (summer 2013), Northern Gannets (winter 2012), loons (winter 2012), 
and alcids (winter 2012). The preliminary results showed that integrated and boat-only models 
predicted similar total abundance across the study area, but distributions and hotspot locations often 
varied between approaches. Northern Gannets and loons showed strong associations between aerial 
and boat data, which led to concentrated hotspots for both species. The influence of integrated models 
were less evident for terns and alcids, but differences in predicted spatial patterns of abundance were 
still evident. Model evaluation indicated that integrated models outperformed models that only used 
boat data when predicting back to the same boat and aerial data used for the analysis, but boat-only 
models were better at predicting distributions from separate surveys (i.e., boat and aerial surveys 
conducted in the same season but during a different month than the data used in the analysis). The 
results of this chapter generally support conclusions of Chapters 12, 17, and 18, which found that the 
distribution of marine birds was often patchy, species- and survey-specific, and correlated with habitat 
covariates. Developing new joint modeling approaches can improve identification of important habitat use 
areas (particularly local dynamic hotspots) and provides a framework to compare historical and new 
sources of data. Further exploration of seasonal, annual, and species-specific results will be useful to 
evaluate the performance of integrated models to predict important habitat use areas. 

Introduction 
Shipboard and traditional aerial survey methodologies have been compared extensively in their 
performance at estimating marine bird species richness and abundance (see Camphuysen et al. 2004 for 
an overview). Advantages of shipboard and aerial survey methods vary by species of interest, logistical 
constraints, size of area surveyed, and specific research questions (Camphuysen et al. 2004). High 
resolution digital video aerial surveys (hereafter “digital video aerial surveys”) have become common 
practice for monitoring of marine wildlife in Europe in relation to offshore wind energy development, 
but the technology is still relatively new, and thus has seldom been compared to more traditional survey 
approaches. Digital video aerial surveys provide several benefits, including coverage of a larger 
geographic area in a faster timeframe than is possible with boat surveys (Buckland et al. 2012). Likewise, 
boat-based surveys provide advantages such as the ability to estimate detection probability based on 
distance sampling, and thereby adjust raw counts to develop estimates of abundance (Buckland et al. 
1993, see Chapters 11-12 for details). Application of concurrent shipboard and digital video aerial 
surveys in this study provided a unique opportunity to integrate data collected from both these survey 
types, thus utilizing the strengths of each survey platform.  
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Herein, we investigate an approach to combine shipboard and digital aerial surveys for marine birds into 
a single model that uses information from both datasets (hereafter “integrated model”). We aim to 
compare integrated models and models that use strictly boat data (hereafter “boat-based”). This 
chapter includes the same suite of species as Chapter 18 (terns, Sternidae; alcids, Alcidae; loons, Gavia 
spp.; and Northern Gannets, Morus bassanus) to allow for improved comparisons and insights across 
multiple species groups.  

Our objectives include:  

1. Develop an integrated modeling approach that combines digital video aerial and boat-based 
data to produce a single prediction of marine bird abundance and distribution.  

2. Compare the performance of integrated and boat-based models by evaluating their predictive 
ability to (1) the original boat and aerial datasets (Fitted surveys) and (2) independent boat and 
aerial surveys (i.e., independent surveys conducted in the same season but during a different 
month).  

It is important to note that there are methodological differences in sampling from the boat versus digital 
videography. Some differences are inherent to the two survey methods, such as transect width; the boat 
surveys sample wider transect widths for most species, and use distance sampling to account for 
variation in detection, while aerial surveys sample a defined strip width for all species. Other differences 
are specific to the survey design utilized in this study (e.g., boat and aerial transects were located in 
slightly different geographic areas and occurred at different dates and times). To minimize the study-
specific sources of variation, we accounted for the differences in area sampled, and only used data from 
boat and aerial surveys that occurred within a similar temporal period (i.e., within the same or 
consecutive months of each other).  

In general, our approach first utilized the large geographic coverage of digital video aerial surveys to 
predict areas of higher or lower than average expected marine bird abundance across the study area, 
essentially mapping raw hot and cold spots for each species. Smoothed counts from the digital video 
aerial surveys (i.e., the degree to which grid cells were above or below expected values) were then 
integrated as a covariate in analysis of boat surveys. As in Chapters 11-12, 15, and 18, habitat covariates 
were also included in the analysis. This approach allowed predicted marine bird abundance from boat 
data to not only vary by habitat covariates (similar to Chapters 11-12, and 18), but also by information 
on expected abundance derived from digital video aerial surveys. This additional covariate should inform 
model predictions if similar trends in distribution and abundance were observed in both boat and digital 
video aerial surveys (Chapter 18). Specific details on our modeling approach are provided in the 
Methods section.  

We caution the reader that the approach we use in this chapter is not a fully integrated model, as we 
use the aerial survey data as a covariate for analyzing the boat survey data. However, we implemented 
this approach to see if the aerial data would provide useful information for estimating abundance and 
local hotspots of abundance. After building the models, we compare and contrast those with and 
without the aerial data covariate to see how well the models do at (1) estimating overall abundance and 
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local hotspots and (2) predicting future seabird patterns. This chapter is an important step towards 
simultaneously modeling the two data types, which is the ultimate goal and will continue to be pursued 
in an addendum to the final report, to be completed in 2016.  

Methods 
Field methods for the aerial and boat surveys were explained elsewhere in this report (Chapters 3 and 7, 
respectively). Aerial identification protocols for video analysis were discussed in Chapter 4. For this 
comparison, we used boat survey observations that were sampled from the forward quadrant on one 
side of the vessel, extending up to 1 km from the trackline, and digital aerial observations that were 
collected from four cameras, which each recorded a 50 m band (totaling 0.2 km strip width). For both 
the boat and aerial surveys, we divided survey transects into 4 km segments; this resulted in some 
shorter segments at the transect ends, and segment area (the segment length by the abovementioned 
strip widths for each survey method) was included in our analysis as an offset. The number of individuals 
for each species was summed by segment and survey. We compared two modeling methods to estimate 
abundance and covariate relationships for the same species groups examined in Chapter 18, using data 
from boat and aerial surveys that were closely coincident in time.  

Species 
We investigated the same suite of species as Chapter 18 (terns, alcids, loons, and Northern Gannets).  

Terns  
Terns included Least Terns (Sternula antillarum), Caspian Terns (Hydroprogne caspia), Black Terns 
(Chlidonias niger), Common Terns (Sterna hirundo), Roseate Terns (Sterna dougallii), Royal Terns 
(Thalasseus maximus), and Sandwich Terns (Thalasseus sandvicensis), as well as those individuals 
classified as “unidentified terns.” Vague identifications that could have included other species such as 
gulls (e.g., “large tern or small gull,”) were excluded. Terns were primarily present in the study area 
during spring, summer and fall (Chapters 5, 8, 12), so we focused on boat and aerial surveys during the 
summer (Chapter 18), specifically August (boat) and September (aerial) 2013 (Table 19-1).  

Northern Gannets 
Northern Gannets are the only gannet species found in the study area. Because Northern Gannets were 
primarily present in the study area in late fall to early spring (Chapters 5, 8, 12), it made sense to focus 
on boat and aerial surveys during the winter season (Chapter 18), and for this analysis, we selected the 
survey from December 2012.  

Loons 
We considered loons as a group (all loons, which included Common Loons, Gavia immer, Red-throated 
Loons, G. stellata, and all unidentified loon observations). Similar to Northern Gannets, loons were 
primarily present in the study area from late fall to early spring (Chapters 5, 8, 12). We used the same 
survey, December 2012, for the analysis of loons. 

Alcids 
The alcid group included Razorbills (Alca torda), Dovekies (Alle alle), Atlantic Puffins (Fratercula arctica), 
Common Murres (Uria aalge), Thick-billed Murres (U. lomvia), and Black Guillemots (Cepphus grille), as 
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well as those individuals classified as “unidentified alcids.” Alcids were primarily present in the study 
area during winter (Chapters 5, 8, 12), so again we focused on boat and aerial surveys during the winter 
season (Chapter 18), specifically December 2012. 

Covariates 
As in Chapter 18, we used five covariates in our analyses: three static (distance to shore, slope, and grain 
size), and two dynamic (sea surface temperature and salinity). We excluded chlorophyll-a in these 
analyses because it was co-linear with distance to shore in some of the surveys and we wanted to keep 
the covariates consistent across species. As in Chapter 18, remotely sensed covariate data corresponded 
to the values located at the midpoint of each transect segment. For the static covariates, we calculated 
distance to shore (m) within ArcGIS 10.2 (ESRI, Redlands, CA) and extracted slope (% rise, 370-m 
resolution) and grain size (φ = ‐log2[mean grain diameter in mm], 370-m resolution) from the data layer 
derived by NOAA/NOS National Centers for Coastal Ocean Science (Kinlan et al. 2013). For the dynamic 
covariates, we used Marine Geospatial Ecology Tools in ArcGIS (Roberts et al. 2010) to download 
remotely-sensed data at the highest resolution available for all segments. We compiled daily values for 
sea surface temperature (SST, °C, 1-km GHRSST L4) and salinity (Practical Salinity Units, 9-km HYCOM 
GLBa0.08 Equatorial 4D). In the boat survey analysis, we additionally included Beaufort sea state on the 
binary scale as a covariate to detection, which varied by segment (0 = calm seas, Beaufort state 0-2; 1 = 
rough seas, Beaufort state 3-6; see Chapters 12 and 18).  

We overlaid a predictive grid (approximately 4x4 km grid cells) that encompassed the entire sampled 
area, including the three proposed wind energy areas (Figure 19-1 and Figure 19-2; note that this 
predictive grid is a restricted version of the one used in Chapter 12, to represent the area covered by 
digital aerial surveys). As in Chapter 12, we used data from the midpoint of each cell and the central 
date for each season to predict overall flock abundance to a representative day (summer [terns]: 25 July 
2013, winter [Northern Gannets, loons, and alcids]: 25 December 2012). 

Models 
To facilitate comparisons, we used the same modeling approach across all species. We summarized the 
aerial data such that 𝑦𝑦𝑖𝑖  is the count at segment 𝑖𝑖. For each species or group, we then modeled the aerial 
data using an overdispersed Poisson conditional autoregressive (CAR) model. This approach allowed us 
to capture excess heterogeneity in counts at the segment level (overdispersion), while also allowing 
spatial clustering of counts at a broader level with the CAR portion. To implement the model, we 
assigned each segment to the predictive grid cell that it fell within, thus the notation 𝑖𝑖[𝑗𝑗] indicates that 
segment 𝑖𝑖 is within grid cell 𝑗𝑗.  

The model for aerial surveys was: 

𝑦𝑦𝑖𝑖~Poisson(𝜆𝜆𝑖𝑖) 

log(𝜆𝜆𝑖𝑖) = 𝛼𝛼0 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑖𝑖) + 𝜀𝜀𝑖𝑖 + 𝜃𝜃𝑖𝑖[𝑗𝑗] 

where 𝛼𝛼0 is the intercept, 𝜀𝜀𝑖𝑖 is a random effect at the segment level (𝑖𝑖), and 𝜃𝜃𝑖𝑖[𝑗𝑗] is the spatially 
correlated random effect at the predictive grid cell level (𝑗𝑗). Random segment effects (𝜀𝜀𝑖𝑖) were 
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distributed Normal(0, 𝜏𝜏2). Spatial autocorrelation was evaluated at the grid cell level, thus repeated 
segments (𝑖𝑖) within grid cell 𝑗𝑗 were assigned the same 𝜃𝜃𝑖𝑖[𝑗𝑗]. Specifically,  

𝜃𝜃𝑗𝑗| 𝜃𝜃𝑘𝑘 ≠ 𝜃𝜃𝑗𝑗~Normal�
1
𝑠𝑠𝑗𝑗

 � 𝜃𝜃𝑘𝑘
𝑘𝑘∈𝑐𝑐𝑗𝑗

,
𝜎𝜎2

𝑠𝑠𝑗𝑗
 � 

where 𝑠𝑠𝑗𝑗is the number of neighbors for predictive grid cell 𝑗𝑗 and 𝑐𝑐𝑗𝑗 is the specific set of neighbors for 
predictive grid cell 𝑗𝑗. The set of neighbors for each predictive grid cell (𝑐𝑐𝑗𝑗) was all adjacent grid cells (i.e., 
Queen’s neighborhood). The CAR model also allows inference to unsampled grid cells by utilizing the 
spatial correlation observed in counts across the sampled area. Grid cell specific random effects (𝜃𝜃𝑗𝑗), 
which indicate higher or lower expected grid cell abundance, were then used to inform abundance 
estimates from the boat data.  

Next, for each species or group, we conducted preliminary diagnostics to evaluate boat-based data and 
select the best model for flock abundance, considering the Poisson and Negative Binomial distributions 
(see Chapters 11-12 and 18 for details). It should be noted that in this chapter, as well as Chapters 11 
and 12, abundance of flocks was the sampling unit of analysis; however, Chapter 18 used individuals 
instead of flocks to make direct comparisons between boat and aerial surveys. Boat-based models for 
Northern Gannets, loons, and terns used a Negative Binomial distribution on abundance. The abundance 
component of the boat-based model was constructed such that the flock abundance at segment 𝑖𝑖, 𝑁𝑁i, 
was modeled as: 

𝑁𝑁i~NegBin(𝜆𝜆𝑖𝑖,  𝑎𝑎) 

log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜 𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑖𝑖) + 𝛽𝛽1Dsti + 𝛽𝛽2Slpi + 𝛽𝛽3Grni + 𝛽𝛽4Ssti + 𝛽𝛽5Sali +  𝛽𝛽5𝜃𝜃𝑖𝑖[𝑗𝑗] 

where Dst = distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface 
temperature, Sal = salinity, 𝜃𝜃𝑖𝑖[𝑗𝑗] = the estimated spatially correlated random effect defined above from 
the aerial data, and 𝑎𝑎 is the overdispersion parameter. In this approach, a positive parameter estimate 
for the aerial covariate (𝛽𝛽5) indicates that aerial and boat surveys were observing similar trends, and 
data integration is informative for understanding the abundance patterns between the two surveys. 
Alcid boat-based data were adequately fit with a Poisson distribution, which was identical to the above 
model except that 𝑁𝑁i~Pois(λi).  

Raw count of flocks at segment 𝑖𝑖, 𝑠𝑠i were linked to true abundance (𝑁𝑁i) through estimation of detection 
probability using a half-normal distribution (i.e., distance sampling, see Chapter 11-12, 18; Buckland et 
al. 1993). As in Chapters 12 and 18, we allowed the detection function to vary by a binary indicator of 
sea state.  

Model evaluation 
We evaluated integrated and boat-based models by predicting abundance to the original boat and aerial 
survey data (i.e., fitted surveys) and independent boat and aerial data (i.e., independent surveys in the 
same season). Specifically, we compared tern predictions to the original survey data, August 2013 (boat) 
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and September 2013 (aerial), as well as to independent surveys conducted during September 2013 
(boat) and July 2013 (aerial). For Northern Gannets, loons, and alcids we compared predictions to the 
original survey data in December 2012 (boat and aerial) and independent surveys conducted during 
January 2013 (boat and aerial). Using the posterior means of each model parameter, we predicted the 
abundance of each species using survey-specific habitat covariates. Predictive ability was evaluated 
using root mean squared error (smaller indicates better model fit) with each segment considered as a 
replicate.    

Implementation 
We implemented all models in a Bayesian framework using the package “R2OpenBUGS” (Sturtz et al. 
2010) to run the software OpenBUGS (Thomas et al. 2006) in program R version 3.2.0 (R Core Team 
2014). We standardized the covariates for analysis to center them on a mean = 0, with a variance close 
to 1. We ran three parallel Markov chains for 40,000 iterations following a burn-in of 20,000 iterations, 
thinning by 5. We checked for chain convergence visually (posterior density and trace plots), and 
quantitatively using the Gelman-Rubin statistic (Gelman et al. 2014). This statistic (termed R-hat) is a 
measure of among-chain versus between-chain variance and values < 1.1 indicate convergence (Gelman 
et al. 2014). We also assessed goodness of fit by computing Bayesian p-values. We used Freeman-Tukey 
fit statistics to evaluate the model for abundance, and the Half Normal detection function (Gelman et al. 
2014). 

Results 
The number of species/group-specific observations were > 100 for loons, Northern Gannets, and alcids in 
both boat (flocks) and digital aerial surveys (individuals), and > 60 for terns (Table 19-1). Mean flock size 
varied by species, but most observed flocks were < 2 individuals (Table 19-1). Distributions of flock size 
were right-skewed for all species, with larger flocks (> 18) only observed on rare occasions (Table 19-1). 
Bayesian p-values suggested that model fit was adequate for all of the abundance and detection model 
components (Table 19-2). 

Integrated and boat-based models often resulted in similar abundance estimates (Table 19-3). For 
example, predicted tern abundance from the integrated and boat-based models was 3,367 and 3,727, 
respectively. Covariate relationships were also similar between integrated and boat-based models (Table 
19-4 to Table 19-7). The noticeable exception to this trend was parameter estimates for distance to shore, 
especially for Northern Gannets. Integrated models for Northern Gannets predicted a significant positive 
relationship, while boat-based models predicted a negative relationship (Table 19-6). A reversal of the 
distance to shore parameter estimate was also observed for loons and alcids, but differences were 
generally smaller or non-significant (Table 19-6, Table 19-7, see next paragraph and Discussion for detailed 
explanations). Parameter estimates for the aerial covariate were positive and significant for both 
Northern Gannets and Loons (Table 19-5, Table 19-6). Positive parameter estimates indicated that 
variation in expected grid cell abundance in the aerial-based models were positively correlated with 
variation in expected grid cell abundance estimated from the boat data. Mean parameter estimates for 
terns and alcids were negative, but not significant (Table 19-4, Table 19-7).  
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Predicted distribution and abundance from both integrated and boat-based models showed similar 
relationships, with terns, loons, and Northern Gannets predicted to be closer to shore (Figure 19-2 to 
Figure 19-4). Integrated models, however, often identified hotspots that were not predicted in boat-
based models (Figure 19-2 to Figure 19-5). Hotspots were particularly evident for Northern Gannets 
(Figure 19-3) and loons (Figure 19-4). Predicted distributions for terns and alicds were often more similar 
across models, but areas of higher and lower abundances were still noticeable (Figure 19-2, Figure 19-5). 
For instance, boat-based models for Northern Gannets predicted a rather uniform trend in abundance 
that decreased with distance to shore. Integrating information from aerial surveys, however, predicted a 
much more clustered distribution, even though total abundance was similar between the models (Figure 
19-3, Table 19-1). Similarly, boat-based models for terns predicted a relatively ubiquitous near-shore 
abundance that quickly decreased with distance to shore (Figure 19-2). Integrated models predicted a 
similar trend with distance to shore for terns, but indicated several areas of higher and lower 
abundances in the nearshore environment (Figure 19-2). Over the entire study area, the range of 
predicted grid cell-specific flock abundances was much smaller for alcids (range = 0 - 40 flocks per grid cell) 
and terns (0 - 60 flocks per grid cell) relative to Northern Gannets (0 - 400 flocks per grid cell) and loons (0 - 
200 flocks per grid cell; note species-specific scales for Figure 19-2 to Figure 19-5). 

Root mean squared error for integrated models was generally lower, or at least equal to boat-based 
models when predicting back to the original boat and aerial survey data (Table 19-8). Boat-based 
predictions, however, often outperformed integrated models when predicting to independent boat and 
aerial survey data (i.e., predicting to a different survey in the same season, Table 19-8).  

Discussion 
Jointly modeling aerial and boat survey data can improve our understanding of several important 
ecological phenomena important to proposed wind energy development, especially (1) clustering of 
marine wildlife within the study area and (2) relationships between marine wildlife abundance and 
spatially varying habitat covariates. An integrated approach utilizes beneficial aspects of both survey 
methods, with study area predictions informed by both aerial surveys, which encompassed a large 
geographic area, and boat surveys that allowed for estimation of detection probability (see Chapters 11-
12, and 18; Winiarski et al. 2014). The integrated model presented herein had noticeable improvements 
in predicting local hotspots and marine bird distribution relative to models that only included boat-
based data. The integrated model, however, had relatively low predictive power to independent surveys 
(data collected from a survey different than the one used to fit the models), which was likely a 
consequence of interseasonal variation in local hotspots, changes in habitat covariates, and possibly 
changes in the relationships with those covariates (Winiarski et al. 2013, Winiarski et al. 2014, Chapter 
18).  

In general, habitat relationships were similar to those presented in Chapter 18. For instance, relationships 
with distance to shore were consistently negative for terns, loons, and Northern Gannets in boat-based 
models herein and in Chapter 18. Conversely, parameter estimates for distance to shore were sometimes 
reversed (positive) in the integrated model. Both boat-based and integrated models, however, still 
predicted increased nearshore distribution patterns (e.g., areas of higher predicted abundance for 
Northern Gannet were generally closer to shore). Distance to shore and the aerial covariate used in the 



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

Part IV: Integrating data across survey platforms Chapter 19 Page 8 
 

integrated model were collinear for all species (< 0.60), but likely not strong enough to completely explain 
the differences in the distance to shore parameter estimate. Instead, integrating aerial data likely provided 
more information on areas of particularly high or low abundances, and was a more informative covariate 
than the less variable distance to shore covariate. These examples demonstrate the necessity of 
investigating both parameter estimates and predicted abundance maps to determine proper 
interpretations from boat-based and integrated models. 

In line with our hypotheses, integrated models improved the identification of abundance hotspots and 
areas of lower than expected abundances. The greater spatial coverage of aerial surveys improved the 
detection of latitudinal gradients and hotspots, especially those occurring outside of areas surveyed by the 
boat. Covariate relationships identified during boat surveys, however, remained important predictors of 
marine bird abundance and distribution. Differences between modeling approaches were most evident for 
Northern Gannets and loons, where integrated models predicted increased clustering relative to boat-
based model predictions. For loons, integrated models predicted both a distance to shore effect and 
latitudinal gradient, with abundances highest near the mouth of the Chesapeake Bay (southwest region of 
the study area). Similarly, integrated model predictions for Northern Gannets were clustered near the 
mouth of the Chesapeake Bay and a few nearshore areas off the coasts of Virginia. 

Due to the high proportion of birds in the aerial dataset that were not identified to species, we could not 
model species-specific abundances (e.g., Common and Red-throated Loons; see Chapter 16 for details). 
However, one goal for creating an integrated model with the two datasets is to estimate species-specific 
abundances by accounting for birds that were not identified to species. This is not straightforward, as the 
work in Chapter 16 uses the information from the boat surveys to inform species identification in the aerial 
survey, while in the joint model, we want to use both data simultaneously to estimate abundance. After 
developing the fully integrated models, we hope to incorporate a model for species identification like the 
one presented in Chapter 16. Until that point, our integrated approach is limited to the best available data 
for each survey type, and we will continue to use species groups (e.g., loons).  

Integrated models were an improvement over boat-only models at identifying hotspots and predicting to 
the original surveys. Boat-only models, however, were better at predicting patterns observed in 
independent surveys conducted in the same season, which are likely longer-term patterns of abundance. 
Short-term changes in local hotspot locations, possibly due to shifting prey distributions, affect the 
predictive ability of both modeling approaches. Predictions from integrated models may be particularly 
affected by shifting hotspot locations, as aerial data from one sampling period will not necessarily improve 
predictions for a different sampling period. Further exploration of seasonal, annual, and species-specific 
differences beyond those explored here will help evaluate the performance of integrated models. Overall, 
integrated models improved identification of important habitat use areas, but further work is required to 
explore their predictive ability across surveys.  

Developing new approaches to jointly model disparate datasets can improve identification of important 
habitat use areas, while also providing a framework to compare and possibly combine historical (i.e., 
boat-based) and new sources of data (i.e., boat-based and high definition videography). Here, we have 
used the aerial data as a covariate for estimating abundance from the boat data, but have not formally 



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

Part IV: Integrating data across survey platforms Chapter 19 Page 9 
 

integrated the two data types. Identification of positive relationships between boat and aerial surveys 
suggests that these survey types often identify similar trends in abundance and distribution across the 
study area. Verifying the consistency of these results across multiple surveys, species, and geographic 
areas will be vital to developing fully integrated modeling approaches. 
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Figures and tables 

 

Figure 19-1. Study area. Boat transects are shown in blue and red, and aerial transects in gray; Maryland extension transects 
(funded by the state of Maryland and conducted only in the second year of surveys) are shown in red (boat) and dark gray 
(aerial). Department of Energy (DOE)-funded high density aerial surveys were located within federally designated wind energy 
areas (WEAs).  
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Figure 19-2. Predicted abundance of tern flocks using the boat-based model (Habitat, left) or integrated model (Habitat + 
Aerial, right). Note species-specific flock abundance scale. Median tern flock size was 1.0 individuals (Table 19-1). Covariate 
values were from the midpoint date for the summer season (25 July 2013). White grids represent proposed wind energy areas. 
See Table 19-1.   
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Figure 19-3. Predicted abundance of Northern Gannet flocks using the boat-based model (Habitat, left) or integrated model 
(Habitat + Aerial, right). Note species-specific flock abundance scale. Median Northern Gannet flock size was 1.0 individuals 
(Table 19-1). Covariate values were from the midpoint date for the winter season (25 December 2012). White grids represent 
proposed wind energy areas. 
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Figure 19-4. Predicted abundance of loon flocks using the boat-based model (Habitat, left) or integrated model (Habitat + 
Aerial, right). Note species-specific flock abundance scale. Median loon flock size was 1.0 individuals (Table 19-1). Covariate 
values were from the midpoint date for the winter season (25 December 2012). White grids represent proposed wind energy 
areas.  

  



Wildlife Studies on the Mid-Atlantic Outer Continental Shelf: Final Report 2015 
 

Part IV: Integrating data across survey platforms Chapter 19 Page 15 
 

  

Figure 19-5. Predicted abundance of alcid flocks using the boat-based model (Habitat, left) or integrated model (Habitat + 
Aerial, right). Note species-specific flock abundance scale. Median alcid flock size was 2.0 individuals (Table 19-1). Covariate 
values were from the midpoint date for the winter season (25 December 2012). Black grids represent proposed wind energy 
areas. 
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Table 19-1. Surveys used in the analysis for each species/group, and the raw counts (observations) for each species/group.  

 
Boat 

Survey 

 
Aerial 
survey 

 
Group 

Boat observations Aerial 
observations 

Flocks 
Flock size 

Mean Median Min Max Individuals 

Aug 2013 Sep 2013 Terns 67 1.7 1.0 1 30 69 

Dec 2012 Dec 2012 Northern Gannets 306 3.4 1.0 1 350 407 

Dec 2012 Dec 2012 Loons 299 1.4 1.0 1 25 703 

Dec 2012 Dec 2012 Alcids 122 2.3 2.0 1 18 148 
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Table 19-2. Bayesian p-values for the abundance and detection components of the models, using either the boat-based 
model (Habitat) or integrated model (Habitat +Aerial). Values close to 0.5 indicate good model fit. 

Group  
Model 

Boat Aerial 

Abundance Detection Abundance 

Terns Habitat 0.51 0.48 NA 

 
Habitat + Aerial 0.51 0.48 0.44 

Northern Gannets Habitat 0.44 0.23 NA 

 
Habitat + Aerial 0.48 0.23 0.57 

Loons Habitat 0.57 0.32 NA 

 
Habitat + Aerial 0.58 0.31 0.26 

Alcids Habitat 0.58 0.31 NA 

  Habitat + Aerial 0.58 0.31 0.44 
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Table 19-3. Predicted flock abundance of each species/group to a representative summer day (25 Jul. 2013; terns) or winter 
day (25 Dec. 2012; Northern Gannets, loons, and alcids) using either the boat-based model (Habitat) or integrated model 
(Habitat +Aerial). Prediction area was constant across species and designed to represent the surveyed area (see Figure 19-2, 
Figure 19-3, Figure 19-4, and Figure 19-5).  

Boat survey Species/Group 
Predicted abundance 

Habitat Habitat + Aerial 

Aug 2013 Terns 3,726.8 3,366.6 

Dec 2012 Northern Gannets 19,576.9 20,275.4 

Dec 2012 Loons 18,503.6 17,371.6 

Dec 2012 Alcids 12,969.0 14,653.6 
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Table 19-4. Parameter estimates for terns from the boat based-model (Habitat) or integrated model (Habitat + Aerial). Abundance was modeled using a Negative Binomial 
distribution. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, 𝜶𝜶 and 𝜷𝜷 parameters are on the log scale. Dst = 
distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, Aerial = aerial covariate (i.e., smoothed aerial counts), and 
Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The posterior mean for covariates where the 95% credible interval does not overlap zero are in bold italics. 

Terns 

Negative Binomial Habitat Habitat + Aerial 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance 

Intercept; α0 -2.12 0.35 -2.85 -1.48 -2.29 0.39 -3.10 -1.58 

Dst; α1 -1.91 0.37 -2.67 -1.23 -2.12 0.42 -2.99 -1.35 

Slp; α2 -0.33 0.25 -0.86 0.15 -0.39 0.26 -0.94 0.10 

Grn; α3 0.22 0.23 -0.22 0.68 0.18 0.23 -0.27 0.64 

Sst; α4 -0.20 0.30 -0.79 0.41 -0.29 0.33 -0.96 0.33 

Sal; α5 -0.31 0.23 -0.77 0.14 -0.07 0.29 -0.62 0.52 

Aerial; α6 - - - - -0.26 0.18 -0.63 0.08 

Overdisp.; 𝑎𝑎 1.10 0.74 0.38 2.89 1.17 0.93 0.39 3.17 

Detection Beaufort 0-2;𝛽𝛽0 5.28 0.11 5.08 5.50 5.28 0.11 5.08 5.50 

Beaufort 3-6; 𝛽𝛽1 5.02 0.14 4.76 5.32 5.03 0.14 4.77 5.32 
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Table 19-5. Parameter estimates for Northern Gannets from the boat based-model (Habitat) or integrated model (Habitat + Aerial). Abundance was modeled using a Negative 
Binomial distribution. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, 𝜶𝜶 and 𝜷𝜷 parameters are on the log scale. Dst 
= distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, Aerial = aerial covariate (i.e., smoothed aerial counts), and 
Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The posterior mean for covariates where the 95% credible interval does not overlap zero are in bold italics. 

Northern Gannets 

Negative Binomial Habitat Habitat + Aerial 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance 

Intercept; α0 0.11 0.14 -0.17 0.41 0.11 0.13 -0.15 0.37 

Dst; α1 -0.48 0.21 -0.88 -0.07 0.80 0.32 0.21 1.46 

Slp; α2 -0.33 0.18 -0.68 0.02 -0.31 0.16 -0.64 0.00 

Grn; α3 0.20 0.16 -0.13 0.52 0.00 0.15 -0.31 0.29 

Sst; α4 0.06 0.18 -0.30 0.40 -0.86 0.24 -1.33 -0.39 

Sal; α5 -0.14 0.19 -0.54 0.21 -0.24 0.19 -0.64 0.12 

Aerial; α6 - - - - 0.86 0.17 0.54 1.24 

Overdisp.; 𝑎𝑎 0.54 0.10 0.37 0.76 0.77 0.17 0.50 1.14 

Detection 
Beaufort 0-2;𝛽𝛽0 5.67 0.05 5.58 5.77 5.66 0.05 5.57 5.76 

Beaufort 3-6; 𝛽𝛽1 5.80 0.08 5.65 5.97 5.83 0.08 5.68 6.01 
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Table 19-6. Parameter estimates for loons from the boat based-model (Habitat) or integrated model (Habitat + Aerial). Abundance was modeled using a Negative Binomial 
distribution. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, 𝜶𝜶 and 𝜷𝜷 parameters are on the log scale. Dst = 
distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, Aerial = aerial covariate (i.e., smoothed aerial counts), and 
Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The posterior mean for covariates where the 95% credible interval does not overlap zero are in bold italics. 

Loons 

Negative Binomial Habitat Habitat + Aerial 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance 

Intercept; α0 0.26 0.12 0.03 0.49 0.02 0.12 -0.22 0.25 

Dst; α1 -0.86 0.20 -1.25 -0.48 0.09 0.26 -0.45 0.60 

Slp; α2 -0.08 0.11 -0.30 0.15 0.02 0.11 -0.20 0.24 

Grn; α3 0.06 0.12 -0.17 0.30 0.00 0.11 -0.21 0.22 

Sst; α4 0.69 0.15 0.40 0.98 -0.39 0.26 -0.89 0.15 

Sal; α5 -0.51 0.14 -0.79 -0.25 -0.44 0.12 -0.68 -0.22 

Aerial; α6 - - - - 1.26 0.26 0.75 1.77 

Overdisp.; 𝑎𝑎 1.42 0.42 0.81 2.42 1.94 0.65 1.04 3.55 

Detection 
Beaufort 0-2; 𝛽𝛽0 5.42 0.05 5.33 5.52 5.41 0.05 5.33 5.50 

Beaufort 3-6; 𝛽𝛽1 5.48 0.09 5.33 5.66 5.53 0.09 5.36 5.71 
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Table 19-7. Parameter estimates for alcids from the boat based-model (Habitat) or integrated model (Habitat + Aerial). Abundance was modeled using a Poisson distribution. 
SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, 𝜶𝜶 and 𝜷𝜷 parameters are on the log scale. Dst = distance to shore, 
Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, Aerial = aerial covariate (i.e., smoothed aerial counts), and Beaufort sea state 
3-6 are rough seas (as opposed to calm, 0-2). The posterior mean for covariates where the 95% credible interval does not overlap zero are in bold italics. 

Alcids 

Poisson Habitat Habitat + Aerial 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance 

Intercept; α0 -0.02 0.12 -0.26 0.21 0.03 0.12 -0.21 0.27 

Dst; α1 0.09 0.15 -0.20 0.37 -0.20 0.25 -0.70 0.30 

Slp; α2 0.08 0.09 -0.10 0.25 0.07 0.09 -0.12 0.23 

Grn; α3 -0.12 0.10 -0.33 0.08 -0.10 0.10 -0.31 0.10 

Sst; α4 -0.02 0.14 -0.28 0.25 0.30 0.26 -0.21 0.82 

Sal; α5 -0.15 0.10 -0.33 0.06 -0.17 0.10 -0.36 0.04 

Aerial; α6 - - - - -0.27 0.19 -0.65 0.11 

Detection 
Beaufort 0-2; 𝛽𝛽0 5.07 0.07 4.93 5.22 5.07 0.07 4.94 5.22 

Beaufort 3-6; 𝛽𝛽1 4.79 0.13 4.54 5.05 4.77 0.13 4.53 5.03 
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Table 19-8. Root mean squared error (RMSE) evaluating the ability of each model to predict abundance in (a) the original 
boat and aerial datasets (Original surveys) and (b) independent boat and aerial datasets (Independent surveys). Predictions 
were from the boat-based (Habitat) or integrated model (Habitat + Aerial). Dates for the original surveys and independent 
surveys are provided. Root mean squared error values closer to zero indicate better model fit (lower value for each comparison 
is in bold italics). 

(a) Original surveys Original 
survey date 

RMSE 

Group Dataset Habitat Habitat + 
Aerial 

Terns 
Boat Aug-13 0.9 0.9 

Aerial Sep-13 0.7 0.6 

Northern Gannets Boat Dec-12 3.6 3.1 

Aerial Dec-12 1.8 1.0 

Loons Boat Dec-12 2.2 2.0 

Aerial Dec-12 3.2 2.7 

Alcids 
Boat Dec-12 1.0 1.0 

Aerial Dec-12 1.1 1.4 

 
 

 
  (b) Independent surveys Independent 

survey date 

RMSE 

Group Dataset Habitat Habitat + 
Aerial 

Terns Boat Sep-13 1.0 1.0 

Aerial Jul-13 0.5 0.6 

Northern Gannets Boat Jan-13 4.5 14.4 

Aerial Feb-13 21.5 22.1 

Loons Boat Jan-13 2.1 3.9 

Aerial Feb-13 3.2 3.4 

Alcids Boat Jan-13 1.6 1.6 

Aerial Feb-13 1.7 1.6 
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