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Chapter 13 Highlights 
Comparison of habitat relationships and abundance estimates from boat and digital aerial surveys across 
the Mid-Atlantic study area  

Context1 
Identifying the exposure of seabird species to proposed development projects often requires an 
understanding of how their abundance relates to environmental covariates. When multiple survey 
approaches are used, we must additionally determine how such sampling methods differ in estimating 
species’ abundance in relation to these covariates. In this chapter, we focus on comparing data between 
survey methods for the purpose of determining how best to combine boat and digital aerial survey data 
for analysis. We tried to make the models as similar between survey types and species as possible, to 
facilitate comparison, which meant sometimes using slightly different formulations of models from 
other chapters. We analyzed the boat data similarly to Chapter 9, but with single species instead of a 
community. The digital aerial data are modeled similarly to Chapter 12, but using generalized linear 
models rather than generalized additive models.   

This chapter presents a preliminary analysis of data from four seabird groups (terns, gannets, loons, and 
alcids) across the seasons when they were present in the study region. Remotely-collected 
environmental data were incorporated into separate boat and digital aerial models, to compare and 
contrast the estimated effects of habitat on seabird abundance using data from each sampling method. 
Chapter 14 builds upon these results and examines an integrated modeling approach for these taxa. 

Study goal/objectives addressed in this chapter 
Compare the estimated effect of habitat on the predicted abundance of marine bird species by season 
for models based on boat and aerial digital videography data. 

Highlights 
• Distance to shore was generally the most common predictor of abundance across species and 

surveys. 
• Similar habitat relationships were estimated between the two survey types for Northern 

Gannets, terns, and loons; alcids were less consistent between the survey types and years. 
• Accounting for imperfect detection in the boat data resulted in higher abundance for the boat-

based than the aerial models. 

Implications 
Boat-based and digital aerial survey data provide comparable estimates of habitat relationships. This 
suggests that a model that can combine both data types may be the most powerful for understanding 
seabird distributions, although there are many ways to jointly model the data. Based on these results, 
caution should be taken for species like alcids, where different patterns were observed between survey 
types. Such differences may be due to differences in the sampling domain, detectability, or temporal 
variation. 

                                                           
1 For more detailed context for this chapter, please see the introduction to Part IV of this report. 
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Abstract 
This chapter is a preliminary analysis that explores the patterns of seabird abundances observed in the 
shipboard and digital aerial surveys. Other chapters in this report (e.g., Chapter 9) focus on analysis of only 
the boat survey data, but the goal in this chapter is to compare the boat data with the aerial data to 
determine how best to combine the data types into one joint analysis. These results are not meant to be 
compared with other chapters that focused on abundance estimates, but instead just to evaluate the 
patterns and differences between the survey types. As such, this chapter uses slightly different approaches 
than other chapters, in order make the models as similar between survey types and species as possible and 
facilitate direct comparisons. The surveys have some spatial and temporal mis-match, which may cause 
variation in the observations. Additionally, there has been little previous work that jointly models boat 
surveys with distance-sampling and aerial digital videography surveys, thus demonstrating the need to 
conduct a preliminary exploration of the two datasets.  

Our results indicate that for the species and groups included in this analysis (terns, alcids, loons, and 
Northern Gannets), we generally find that the habitat relationships are consistent between survey 
types, with distance to shore being the most common significant predictor of abundance. For alcids, we 
saw a lack of consistency in the patterns, both between years and survey types. We also found that the 
estimated abundance was generally higher for the boat surveys, likely due to the ability of our models to 
address imperfect detection in the boat sampling. The findings in this chapter were used to inform the 
development of an integrated model, presented in Chapter 14.    
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Introduction 
Shipboard and traditional aerial survey methodologies have been compared extensively in their 
performance at estimating species richness and abundance (for overview, see Camphuysen et al. 2004). 
Comparisons between shipboard and high resolution digital video aerial surveys, however, remain 
sparse given the novelty of high resolution digital videography (Buckland et al. 2012). Digital 
videography covers a larger geographic area in a faster time frame, but the technology used in this study 
was limited by a few components: 1) only 200 meters of width was sampled, which is a small snapshot 
of the marine realm, 2) the angle and resolution of the video restricted most objects to being identified 
to family or group, as opposed to individual or species, and 3) there is no method to address issues of 
detection and availability, which likely vary by species, season, weather, or other factors. We evaluate 
the variation that may arise in digital videography data and identify issues related to inherent detection 
and identification constraints. We postulate that, were the digital aerial and boat surveys to provide 
similar parameter and abundance estimates, then both surveys would not need to be conducted 
simultaneously; however, if there are differences in the datasets, then finding ways that make use of the 
information in both datasets (a ‘joint model’) will be very informative. Before taking the next step in 
creating a joint model, we first aim to compare the two methods of sampling by using a suite of species 
(terns, alcids, loons, and Northern Gannets) and examining their habitat relationships across different 
seasons. 

Our objectives include:  

1. Compare the habitat parameter estimates from boat and aerial habitat models for various 
species across different seasons. 

2. Based on the results of the habitat modeling, compare the predicted abundance from boat-
based and digital videography estimates.  

3. Evaluate the high intensity surveys over Maryland waters as compared to the Mid-Atlantic 
Baseline Studies project area to see if there are regional differences in habitat responses (not 
complete; see Future Work section for preliminary analyses). 

 
It is important to note that there are methodological differences in sampling from the boat versus digital 
videography. Some differences are inherent to the two survey methods, such as transect width; the boat 
surveys sample wider transect widths for most species, and use distance sampling to account for 
variation in detection. Other differences are specific to the survey design utilized in this study (e.g., boat 
and aerial transects were located in slightly different geographic areas and occurred at different days 
and times). To minimize the study-specific sources of variation, we used an offset for area sampled, and 
compiled data from multiple surveys within each survey year. We expected that boat-based models 
would estimate higher abundance as a result of accounting for imperfect detection in the sampling.  

Methods 
One wind energy area (WEA) is designated within the Maryland study area (MD), with two additional 
WEAs in the broader Mid-Atlantic Baseline Studies (MABS) project area, located off the coasts of 
Delaware (DE) and Virginia (VA; Figure 13-1). Field methods for the video aerial and boat surveys are 
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explained elsewhere in this report (Chapters 3 and 6, respectively). Aerial identification protocols for 
video analysis are discussed in Chapter 4. For this comparison, we used boat and video aerial survey 
data collected over the entire MABS study area (including the Maryland Project surveys), and did not 
separately examine data collected within the Maryland study area. We used boat survey observations 
that were sampled from the forward quadrant on one side of the vessel, extending up to 1 km from the 
trackline, and digital aerial observations that were collected from 4 cameras, which each recorded a 50 
m band (totaling 0.2 km strip width). For both the boat and video aerial surveys, we divided survey 
transects into 4 km segments (‘sites’); this resulted in some shorter segments at the transect ends, so 
site area was included as an offset in our analysis. The number of individuals for each species was 
summed by 4 km segment per survey (defined as the time period over which the entire MABS study 
area was sampled). Many species, including terns, Northern Gannets, and loons, are seasonally present 
in the region or observed in low numbers, so specific surveys were combined within each year for 
analysis but varied depending on the species. We compared Northern Gannets, terns, loons, and alcids 
between the two survey methods; due to slight differences between each taxonomic group, we created 
group-specific models, described below.  

Covariates 
We used five covariates in our analyses: three static (distance to shore, slope, and grain size), and two 
dynamic (sea surface temperature and salinity). We excluded chlorophyll-a in these analyses because it 
was collinear with distance to shore in some of the surveys and we wanted to keep the covariates 
consistent across surveys for the purpose of comparison within each species; due to missing data at 
higher resolutions it also varied monthly, which is a lower temporal resolution than the other dynamic 
covariates. Remotely sensed covariate data corresponded to the values located at the midpoint of each 
transect segment. For the static covariates, we calculated distance to shore (m) within ArcGIS 10.2 (ESRI, 
Redlands, CA) and extracted slope (% rise, 370-m resolution) and grain size (φ = ‐log2[mean grain 
diameter in mm], 370-m resolution) from the data layer derived by NOAA/NOS National Centers for 
Coastal Ocean Science (Kinlan et al. 2013). For the dynamic covariates, we used Marine Geospatial 
Ecology Tools in ArcGIS (Roberts et al. 2010) to download remotely-sensed data at the highest 
resolution available for all segments. We compiled daily values for sea surface temperature (SST, °C, 1-
km GHRSST L4) and salinity (Practical Salinity Units, 9-km HYCOM GLBa0.08 Equatorial 4D). In the boat 
survey analysis, we additionally included one covariate on detection: Beaufort sea state on the binary 
scale, which varied by segment (0 = calm seas, Beaufort state 0-2; 1 = rough seas, Beaufort state 3-6).  

Models 
To facilitate comparisons, we ran the same model across both the boat and aerial data for each species, 
except that the boat-based model included an additional component for estimating detection using 
distance sampling (Buckland et al. 1993). For each species or group, we conducted preliminary 
diagnostics to evaluate the data and select the best model for abundance, considering the Poisson, 
Negative Binomial, and zero-inflated versions of both distributions. For the boat-based models, we 
considered a detection as a single individual, thus breaking down each flock into separate detections of 
individuals (as opposed to modeling the flock, as in Sollmann et al. (2015) and Chapter 9, so that we 
could compare parameters directly with the video aerial surveys.  
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Terns  
Terns included Least Terns (Sternula antillarum), Caspian Terns (Hydroprogne caspia), Black Terns 
(Chlidonias niger), Common Terns (Sterna hirundo), Roseate Terns (Sterna dougallii), Royal Terns 
(Thalasseus maximus), and Sandwich Terns (Thalasseus sandvicensis), as well as those individuals 
classified as “unidentified terns.” Vague identifications that could have included other species such as 
gulls (e.g., “large tern or small gull,”) were excluded. Terns were primarily present in the MABS study 
area during spring, summer and fall (Chapters 5, 7, and 9), so we compared three boat and two video 
aerial surveys from June 2012 – September 2012 (first year), and June 2013 – September 2013 (second 
year, excluding the August 2013 aerial survey, which covered only the MD WEA and surrounding areas). 
For the tern models we used a Negative Binomial distribution on abundance and a negative exponential 
distribution on detection (only in the boat survey models). The abundance component of the model for 
both boat and video aerial surveys was constructed such that each count of terns at segment 𝑖𝑖, yi, was 
modeled as: 

yi~NegBin(𝜆𝜆𝑖𝑖,  𝑟𝑟) 

log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) + 𝛽𝛽1Dsti + 𝛽𝛽2Slpi + 𝛽𝛽3Grni + 𝛽𝛽4Ssti + 𝛽𝛽5Sali 

where Dst = distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface 
temperature, Sal = salinity, and 𝑟𝑟 is the overdispersion parameter.  

Northern Gannets 
The only gannets in the area are Northern Gannet (Morus bassanus), thus we only included one species 
in this model. Northern Gannets were primarily present in the MABS study area in late fall to early 
spring (Chapters 5, 7, and 9), so we compared three boat and three video aerial surveys from October 
2012 – February 2013 (first year), and October 2013 – February 2014 (second year). For the Northern 
Gannetmodels we used a Negative Binomial distribution for abundance, and a half-Normal distribution 
for detection (only in the boat survey models). The abundance component of the model for both boat 
and video aerial surveys was constructed such that each count of Northern Gannets at segment 𝑖𝑖, yi, 
was defined:  

yi~NegBin(𝜆𝜆𝑖𝑖,  𝑟𝑟) 

log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) + 𝛽𝛽1Dsti + 𝛽𝛽2Slpi + 𝛽𝛽3Grni + 𝛽𝛽4Ssti 

where Dst = distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, and Sst = sea 
surface temperature. We removed salinity in these models because it was highly collinear with SST and 
distance to shore. 

Loons 
We considered loons by species (Common Loons, Gavia immer, and Red-throated Loons, G. stellata) and 
as a group (all loons, which included both species and all unidentified loon observations), to examine 
whether habitat relationships varied by species. Loons were primarily present in the MABS study area 
from late fall to early spring (Chapters 5, 7, and 9), so we included three boat and three video aerial 
surveys from December 2012 – March 2013 (first year), and December 2013 – May 2014 (second year). 
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For all of the loon models, we used a Negative Binomial distribution on abundance, and a half-Normal 
distribution on detection (only in the boat survey models). The abundance component of the model for 
both boat and video aerial surveys was constructed such that each count of loons at segment 𝑖𝑖, yi, was 
defined:  

yi~NegBin(𝜆𝜆𝑖𝑖,  𝑟𝑟) 

log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) + 𝛽𝛽1Dsti + 𝛽𝛽2Slpi + 𝛽𝛽3Grni + 𝛽𝛽4Ssti + 𝛽𝛽5Sali 

where Dst = distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface 
temperature, Sal = salinity, and a survey specific intercept to address interannual variation in the survey 
counts.  

Alcids 
The alcid group included Razorbills (Alca torda), Dovekies (Alle alle), Atlantic Puffins (Fratercula arctica), 
Common Murres (Uria aalge), Thick-billed Murres (U. lomvia), and Black Guillemots (Cepphus grille), as 
well as those individuals classified as “unidentified alcids.” Alcids were primarily present in the MABS 
study area during winter (Chapters 5, 7, and 9), therefore we compared two boat and two video aerial 
surveys from December 2012 – February 2013 (first year), and December 2013 – February 2014 (second 
year). For all alcid models we used a Negative Binomial distribution on abundance, and a half-Normal 
distribution on detection (only in the boat survey models). To model abundance for both boat and video 
aerial surveys we defined the counts of alcids at segment 𝑖𝑖, yi, such that:  

yi~NegBin(𝜆𝜆𝑖𝑖,  𝑟𝑟) 

log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) + 𝛽𝛽1Dsti + 𝛽𝛽2Slpi + 𝛽𝛽3Grni + 𝛽𝛽4Ssti + 𝛽𝛽5Sali 

where Dst = distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface 
temperature, and Sal = salinity. In the second year of the video aerial surveys, we had to set the 
overdispersion parameter 𝑟𝑟 = 0.02 in order to achieve convergence in the model. There were only 45 
transects with observed alcids during this year, which is a relatively small sample size for the number of 
parameters we are interested in; this particular model requires further exploration.  

Implementation 
We implemented all models in a Bayesian framework using the package “rjags” to run the software JAGS 
(Plummer 2003) in program R version 2.15.3 (R Core Team 2014). We standardized the covariates for 
analysis to center them on a mean = 0, with a variance close to 1. We initialized three parallel Markov 
chains at different values and ran them for 30,000 iterations (boat models) or 10,000 (aerial models) 
following a burn-in of 1,000 iterations. We checked for chain convergence visually (posterior density and 
trace plots), and quantitatively using the Gelman-Rubin statistic (Gelman et al. 2014). This statistic 
(termed R-hat) is a measure of among-chain versus between-chain variance and values < 1.1 indicate 
convergence (Gelman et al. 2014). We also assessed goodness of fit by computing Bayesian p-values. We 
used Freeman-Tukey fit statistics to evaluate the model for abundance, and to select the negative 
exponential or half-Normal detection function (Gelman et al. 2014). Fitting the models resulted in 
estimated abundance to the sampled transects, summed across segments and surveys. Using the 
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posterior means of each model parameter, we additionally predicted the abundance of each wintering 
species to habitat covariates from a representative day (25 Dec 2012), which covered unsampled 
locations in the three WEAs within the MABS study area. 

Results 
Overall, we found that fewer individuals were observed on the video aerial surveys than the boat surveys 
for smaller species (e.g., terns, alcids), and the observations varied by survey date, year, and species (Table 
13-1). Accounting for detection resulted in higher abundance in the boat than the video aerial surveys, 
which carried through to the predicted number of birds in each of the WEAs. In Year 1, the estimated 
number of Northern Gannets was very similar for the boat and video aerial surveys, with the Virginia WEA 
having a lower predicted number of birds from the boat survey than the aerial (Table 13-1). Similarly, in 
Year 2, the number of predicted alcids in all the WEAs from the aerial survey was near 40 birds, while it 
was near 0 birds from the boat survey, though 127 alcids were predicted to the entire MABS study region 
(Table 13-1). These two cases are the only situations where the boat surveys did not predict higher 
abundance of birds than the aerial survey, and are likely due to the strong effect of proximity to shore 
reducing the numbers predicted to the VA WEA (see below for more details on parameter effects). 
Predicted abundance within the Maryland WEA for both boat and video aerial surveys were generally 
similar to predicted counts within the Virginia and Delaware WEAs (Table 13-1). Boat and aerial counts for 
the MD WEA showed similar patterns by year and species group, though aerial predictions for the MD 
WEA were consistently lower than boat predictions for the same years and species.   

Across both the boat and video aerial surveys, proximity to shore was the most important predictor of 
abundance. The abundance of terns, Northern Gannets, and loons increased with proximity to shore 
(Table 13-2 through Table 13-6). Alcids associated more closely with the shoreline in Year 2, but they were 
farther from shore in Year 1 boat surveys (Table 13-7). The detectability of terns, loons, and alcids 
decreased as seas became rougher, whereas Northern Gannets showed no change in detectability in Year 
1, and an opposite effect in Year 2 (Table 13-2 through Table 13-7).  

The general patterns in habitat relationships between the aerial and boat surveys were consistent. Terns 
showed similar parameter estimates for the habitat covariates between survey methods, though this was 
not true for all parameters (Table 13-2); terns were associated with warm water in the first year aerial 
surveys and with fine sand in the second year aerial surveys. We found that Northern Gannets had a 
positive relationship with cold water in all surveys except the first year of the boat surveys, when we found 
no significant relationship (Table 13-3). Northern Gannets were significantly related to all four habitat 
covariates in the second year of surveys, with similar parameter estimates between all models except that 
they associated with coarse sand in the aerial surveys and fine sand in the second year boat surveys. 

For loons, we found similar patterns as with Northern Gannets and terns; however, it is useful to note that 
there were some differences when using species-level data (Table 13-4 to Table 13-6). For example, in 
Year 2 of the aerial survey, only one Red-throated Loon was identified, while there were 2062 total loon 
observations (Table 13-1). This meant that we were unable to model the distribution of Red-throated 
Loons that year for the aerial data; the boat data that same year had 754 observed Red-throated loons. In 
comparison, the Year 2 aerial survey for Common Loons had the most number of significant covariates of 
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any of the loon analyses (Table 13-5). Looking at the boat survey results for year 1, Red-throated Loons 
had significant negative effects of distance to shore, slope, and salinity (Table 13-6); Common Loons also 
had a significant negative effect of salinity, but additionally a positive effect of sea surface temperature 
(Table 13-5). The model for all loons had a significant negative effect of salinity and distance to shore and a 
significant positive effect of sea surface temperature (Table 13-4). Thus the combined model smoothes 
out the individual species effects, losing the importance of slope on Red-throated Loons and suggesting a 
relationship with distance to shore that was not detected in Common Loons. Similar results were observed 
in the first year aerial survey: Common Loons had no significant effects (Table 13-5), Red-throated Loons 
had a significant negative effect of distance to shore (Table 13-6), and all loons had a significant negative 
effect of distance to shore and a positive effect of sea surface temperature (Table 13-4). Here, we may be 
seeing some differences due to increases in sample size; as we add observations from unidentified loons, 
more patterns can be detected. 

Bayesian p-values suggest that model fit was generally adequate for all of the abundance model 
components (Table 13-8); the aerial data for the Northern Gannets and the combined loons did not fit 
very well, and thus other distributions may be explored in these cases. Futher investigation into the 
detection component may be necessary, but in general the estimates of abundance have been rather 
insensitive to the detection model (half-Normal vs. negative exponential; unpublished results), so the 
results are not likely to change significantly even under a different detection model in these cases. 

Discussion 
As expected, proximity to shore was the primary driver of abundance in this study. Chlorophyll 
concentration also increased with proximity to shore and was not included due to this collinearity, which 
suggests that distance to shore may be a proxy for primary productivity in this region. A large effect of 
primary productivity on predator distributions may indicate strong bottom-up forcing in this region. This is 
consistent with studies suggesting that, in waters off the east coast of the US where productivity and 
species richness are relatively high, bottom-up control dominates and resource limitation induces 
positive predator-prey relationships (Ainley and Hyrenbach 2010; Frank et al. 2007; Hunt and McKinnell 
2006).  

The boat surveys generally resulted in higher estimates of abundance compared to the video aerial 
surveys, taking effort into account. The total length of an aerial survey’s transects (3,613 km including the 
Maryland extensions, Chapter 3) is much greater than in a boat survey (571 km including the Maryland 
extensions, Chapter 6). The strip width is 1/5 of the 1 km truncation distance we used for the detection 
function in the boat survey models. Therefore, the aerial survey effort (total area sampled) is 1.3 fold 
greater, so we would expect to estimate more individuals in the video aerial surveys. However, our results 
show the opposite: that the boat survey models consistently estimated and predicted higher abundance, 
which is primarily due to accounting for imperfect detection. The differences are particularly noticeable 
with the smaller species (e.g., terns and alcids), indicating estimating detection bias is important for 
smaller species. 

Detection decreased with increased sea state for all species except Northern Gannets in the Year 2 boat 
surveys. The observer team moved into the pilot house during rough seas, following safety protocol, which 
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likely contributed to reduced visibility. We suspect that the increased detection of Northern Gannets in 
rough seas was a result of differences in behavior, as Northern Gannets are less likely to sit on the water 
during rough seas, and flying Northern Gannets are generally considered to be more visible.  

In general, habitat relationships were similar within a season and between survey types (boat and aerial), 
with a few exceptions. These exceptions could be due to (1) more habitat sampled between the MD and 
VA WEAs in the aerial surveys, or to (2) the extreme habitat values that occurred in the shipping channel to 
Delaware Bay, which were sampled on Transect 2 of the boat surveys (e.g., steep slopes and a strong 
salinity front). Gulf Stream waters on the outer edge of the continental shelf tend to be warmer than 
coastal waters, and salinity also tends to decrease with distance from the freshwater outlets inshore of the 
Delaware and Chesapeake Bays. Thus, the significant influence of warm water and fine sand on abundance 
of terns in the aerial surveys (unlike the boat surveys) may be due to aerial observations of them close to 
shore between the MD and VA WEAs. Opposite effects of sediment grain size on Northern Gannets 
occurred in the Year 2 boat surveys and aerial surveys, which may have been due to differences in 
sampling effort by survey type, where aerial surveys covered more area between the MD and VA WEA 
footprints. In Year 2, the boat surveys also showed that Common Loons associated with steep slope, and 
with more gradual slope in the aerial surveys, which again could be due to areas between the MD and VA 
WEAs, where the bottom is relatively flat. Low salinity had a strong effect on Red-throated Loons in the 
boat surveys, but not in the first year video aerial survey. However, Red-throated Loon data from the video 
aerial surveys should be interpreted with caution, since many Red-throated Loons were not identified to 
species (Hostetter et al., 2015), which may cause biased results. Alcids were likely to be far from shore, 
associating with cold water in the first year boat surveys (similarly to Chapter 9), but the first year video 
aerial surveys showed an association only with warmer water, which may be a result of collinearity 
between SST and distance to shore in gulf stream waters on the outer edge of the continental shelf. 

Similarities between survey types were most pronounced with proximity to shore, which had consistently 
significant effects on (1) terns and loons across both seasons and survey types (Chapter 9), (2) Northern 
Gannets across three of the four models (Chapter 9), and (3) alcids in the second year across both survey 
types. Significant effects were consistent across both survey types in year 2, with respect to cold water and 
Northern Gannets, as well as grain size and Common Loons. Significant effects of warm water on loons 
occurred across both seasons and survey types. Common and Red-throated Loons also associated with low 
salinity in different survey types and seasons. Our results suggest that using both boat and video aerial 
surveys can provide more complete ecological context compared to either survey type alone.  

Future work 
The results of this chapter suggest that combining the two survey types into one comprehensive model 
would be fruitful. The results between the boat and video aerial surveys were generally consistent for the 
species we examined, and variations between the methods may be due to differences in the sampled area 
(larger coverage with video aerial) and in detection (accounted for by distance sampling in boats). Further 
data exploration of yearly differences (as opposed to survey-specific) in covariate values and patterns 
would be useful (e.g., to address issues of collinearity). Additionally, testing the impacts of localized habitat 
on the results for the entire MABS study area would be informative, and could be achieved by removing 
parts of the dataset to evaluate changes in the results (for example transect 2 of the boat survey, which 
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sampled some extreme covariate values). Teasing apart differences due to variation in survey type, inter-
annual differences, and sampling space will help to better understand the differences observed in the 
relationships between seabird abundance and habitat covariates.  

Combining the data into a single model would likely play to the strengths of both survey methodologies 
and provide more reliable inferences about the underlying ecological drivers of seabird distributions and 
abundance. In a first attempt at this, we have implemented an integrated model, described in Chapter 14. 
There are a number of approaches that can be taken when developing a joint model, and we will continue 
to pursue these options in future work. One issue to be addressed is how to deal with availability in the 
digital aerial surveys (see Winiarski et al. 2014); we currently have no measure of availability, and this 
would be difficult to acquire for all species. Thus, in addition to a joint modeling approach to combine the 
survey types, we suggest also conducting an analysis of model sensitivity to availability and detection, to 
better understand the impact of these processes on abundance estimates for the digital aerial surveys. 

Recent studies have shown that species in disparate locations can respond very differently to habitat 
covariates, even in study areas that are in close proximity (Flanders et al. 2015). When enough 
observations are recorded for a species, a reduced area or ‘regional’ model can be fit, though this is not 
common, as marine birds tend to be sparsely distributed over large regions of the ocean. This ‘regional’ 
type model is likely possible for a few select species groups in the Maryland study area, because of the 
high intensity of aerial surveys in the MD WEA and surrounding waters. Using the same model described 
above, we conducted a simple preliminary analysis of the high density aerial surveys in the Maryland study 
area for terns, Northern Gannets, and loons observed in year 2 (when the high-density coverage was 
expanded in Maryland; only data from the MD WEA and MD extension transects were included). Alcids 
were not included in this because only 7 observations were made in Maryland waters in year 2 (Table 
13-9). For the tern analysis, we included the August 2013 survey, which covered exclusively Maryland 
waters; we also added this survey to the MABS analysis, so that the two were more directly comparable. 
Terns had a similar number of observations between the MABS and MD study areas (Table 13-9), 
suggesting that most terns were observed in MD waters; this likely resulted in the two models (MABS 
and MD only) having similar parameter estimates (Table 13-10). Northern Gannets and loons had a 
reduced number of observations in MD waters, which is expected given that this was a subset of the full 
data (Table 13-9). The reduction in data, i.e., number of observed birds, along with what are likely regional 
effects due to different sampled areas, resulted in differences for the two species between the two models 
(Table 13-10). For example, in MD waters, loons did not show a significant response to distance to shore, 
and showed an opposite response to grain size (Table 13-10). These results suggest that while there are 
some main consistencies between the larger MABS study area and MD waters, there may be some fine 
scale variation that is important for making localized decisions. In this latter case, and when the data are 
sufficient, further exploration of regional or local models may prove useful in determining the sources of 
fine scale variation in seabird abundances. 
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Figures and tables 
 

  
Figure 13-1. Boat and aerial survey transects for the Mid-Atlantic Baseline Studies (MABS) and Maryland Projects. The broader Mid-Atlantic study area, or MABS study area 
(left), includes surveys funded by both DOE and Maryland (2012-2014). The “Maryland study area” (right, black dashed line) includes all boat and aerial survey transects in 
waters offshore of Maryland (both DOE and Maryland-funded surveys, 2012-2014). The Maryland Project surveys are a subset of the surveys within the Maryland study area 
that were specifically funded by the state of Maryland in 2013-2014. These surveys included boat survey extensions into state waters (red bars), aerial survey high-density 
transect extensions west and south of the Maryland WEA (charcoal lines), and a 15th aerial survey of the Maryland WEA and Maryland extension high-density transects in 2013. 
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Table 13-1. Surveys used in the analysis for each species/group and the abundance of each species/group. Observed (Obs.) refers to raw counts and estimated abundance 
(Estim.) is fit to the sampled transects (summed across the listed surveys). We predicted (Predicted) the abundance of each species to a representative summer or winter day 
(25 Jul 2012 for terns; 25 Dec 2012 for Northern Gannets, loons, alcids) in each wind energy area (WEA) by state: Delaware (DE), Maryland (MD), and Virginia (VA). aPredictions 
used first survey intercept. 
 

Year  Boat Surveys  Aerial Surveys Group 

Boat abundance Aerial abundance 

Obs. Estim. Predicted  Obs. Predicted  

trans. trans. DE WEA MD WEA VA WEA trans. DE WEA MD WEA VA WEA 

 First 

Jun-12 Aug-12 Sep-12 Jun-12 Sep-12  Terns 534 3,378.4 1,151.5 1,382.4 152.4 108 93.4 109.6 11.2 

Nov-12 Dec-12 Jan-13 Oct-12 Dec-12 Feb-13 Gannets 3,998 8,960.5 1,215.5 1,313.6 408.0 4,190 1,158.3 932.6 1,022.6 

Dec-12 
  

Jan-13 
  

  
Mar-13 

  

  
Dec-12 

  

  
Feb-13 

  

  
Mar-13 

  

Loonsa 996 3,811.2 1,139.6 804.8 1,356.0 1,661 368.7  329.8  307.5  

Common L.a 517 2,094.7 647.3 462.5 1,140.0 173 74.9  59.7  67.5  

Red-thr. L.a 441 1,805.9 360.7 260.3 185.4 117 64.2  62.1  30.7  

  Dec-12 Jan-13   Dec-12 Feb-13 Alcids 598 3,495.1 1,409.3 889.5 2839.9 339 122.9  191.9  201.8  

Second  

Jun-13 Aug-13 Sep-13 Jul-13 Sep-13  Terns 243 1,877.9 269.4 309.0 74.4 154 19.8 29.0 1.5 

Oct-13 Dec-13 Jan-14 Oct-13 Dec-13 Feb-14 Gannets 4,723 5,693.9 5,340.3 1,578.3 2,272.4 1,612 419.3  412.8  152.2  

  
Dec-13 

  

  
Jan-14 

  

  
Apr-14 

  

  
Dec-13 

  

  
Feb-14 

  

  
May-14 

  

Loonsa 2,626 10,884.9 1,476.7 1,512.9 941.5 2,062 666.7  521.9  697.6  

Common L.a 1,851 8,453.8 407.2 510.5 250.6 122 55.8  42.1  105.5  

Red-thr. L.a 754 2,586.0 216.0 187.1 97.9 1 NA  NA NA 

  Dec-13 Jan-14   Dec-13 Feb-14 Alcids 578 1,769.4 0.3 0.9 0.1 102 10.8  12.6  19.6  
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Table 13-2. Parameter estimates by year from the boat and high resolution digital video aerial surveys, using a Negative Binomial distribution to model counts of terns. SD is 
the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, and all abundance parameters are on the log scale. Dst = distance to 
shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, and Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The 
posterior mean for covariates where the 95% Bayesian credible interval (BCI) does not overlap zero are in bold italics. 
 

Terns 
Boat Aerial 

First year Second year First year Second year 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance Intercept -0.33 0.21 -0.74 0.08 -0.94 0.21 -1.33 -0.53 -3.81 0.24 -4.31 -3.36 -4.18 0.26 -4.70 -3.70 

  Dst -1.96 0.33 -2.64 -1.35 -1.42 0.20 -1.83 -1.05 -1.61 0.22 -2.05 -1.19 -2.14 0.20 -2.55 -1.77 

  Slp -0.32 0.19 -0.71 0.07 -0.02 0.17 -0.36 0.32 0.01 0.13 -0.24 0.26 0.08 0.10 -0.12 0.28 

  Grn -0.12 0.19 -0.48 0.25 0.24 0.19 -0.13 0.62 0.18 0.14 -0.11 0.45 0.37 0.13 0.13 0.63 

  Sst 0.62 0.37 -0.10 1.33 0.17 0.16 -0.15 0.49 0.64 0.22 0.20 1.07 0.02 0.12 -0.21 0.25 

  Sal -0.31 0.32 -0.90 0.32 -0.08 0.18 -0.44 0.26 -0.39 0.25 -0.87 0.09 -0.30 0.16 -0.63 0.02 

  Overdisp; 𝑟𝑟 0.12 0.02 0.09 0.15 0.21 0.04 0.14 0.31 0.22 0.07 0.12 0.38 0.31 0.08 0.18 0.49 

Detection Beaufort 0-2 5.25 0.07 5.12 5.38 5.16 0.09 5.00 5.33         
  Beaufort 3-6 4.84 0.07 4.70 4.98 4.46 0.11 4.24 4.68         
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Table 13-3. Parameter estimates by year from the boat and high resolution digital video aerial surveys, using a Negative Binomial distribution to model counts of Northern 
Gannets. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, and all abundance parameters are on the log scale . Dst = 
distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, and Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The 
posterior mean for covariates where the 95% Bayesian credible interval (BCI) does not overlap zero are in bold italics. 
 

Gannets 
Boat Aerial 

First year Second year First year Second year 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance Intercept 0.92 0.10 0.72 1.13 1.07 0.09 0.89 1.26 -0.14 0.07 -0.28 0.01 -0.80 0.06 -0.93 -0.68 

  Dst -1.21 0.12 -1.43 -0.97 -1.08 0.13 -1.34 -0.83 0.11 0.08 -0.05 0.27 -0.79 0.07 -0.92 -0.65 

  Slp -0.11 0.11 -0.30 0.11 0.30 0.09 0.12 0.48 -0.09 0.07 -0.23 0.05 0.26 0.06 0.15 0.37 

  Grn 0.13 0.10 -0.07 0.31 -0.29 0.12 -0.54 -0.07 0.20 0.07 0.05 0.34 0.15 0.06 0.03 0.26 

  Sst -0.02 0.12 -0.25 0.21 -0.76 0.10 -0.96 -0.56 -1.87 0.10 -2.06 -1.68 -0.65 0.08 -0.80 -0.50 

  Overdisp; 𝑟𝑟 0.28 0.02 0.23 0.32 0.25 0.02 0.22 0.30 0.14 0.01 0.13 0.16 0.14 0.01 0.12 0.16 

Detection Beaufort 0-2 5.86 0.02 5.82 5.89 5.67 0.02 5.63 5.72         
  Beaufort 3-6 5.91 0.02 5.87 5.95 5.82 0.01 5.80 5.85         
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Table 13-4. Parameter estimates by year from the boat and high resolution digital video aerial surveys, using a Negative Binomial distribution to model counts of all loons 
(Common, Red-throated, and unknowns combined). SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter,  and all 
abundance parameters are on the log scale (from the count process). Dst = distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface 
temperature, Sal = salinity, and Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The posterior mean for covariates where the 95% Bayesian credible interval (BCI) 
does not overlap zero are in bold italics. 
 

Loons 
Boat Aerial 

First year Second year First year Second year 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance Intercept 
(survey 1) 0.04 0.23 -0.40 0.50 1.20 0.24 0.72 1.70 -0.95 0.21 -1.36 -0.54 0.13 0.06 0.01 0.25 

  Intercept 
(survey 2) 0.56 0.15 0.28 0.85 1.32 0.21 0.92 1.74 0.67 0.10 0.48 0.87 0.72 0.08 0.55 0.88 

  Intercept 
(survey 3) 1.37 0.19 1.01 1.74 1.31 0.15 1.01 1.61 0.01 0.18 -0.35 0.35 -2.06 0.13 -2.31 -1.82 

  Dst -0.25 0.10 -0.45 -0.05 -0.76 0.17 -1.10 -0.43 -0.65 0.06 -0.76 -0.54 -0.28 0.04 -0.35 -0.20 

  Slp -0.11 0.08 -0.26 0.04 0.21 0.08 0.06 0.37 -0.02 0.04 -0.09 0.05 -0.07 0.04 -0.14 0.00 

  Grn -0.08 0.08 -0.23 0.07 0.37 0.09 0.20 0.57 -0.06 0.04 -0.13 0.02 0.00 0.03 -0.06 0.07 

  Sst 0.35 0.12 0.12 0.57 0.53 0.12 0.30 0.76 0.75 0.11 0.53 0.96 0.45 0.07 0.32 0.58 

  Sal -0.50 0.12 -0.74 -0.26 -0.12 0.21 -0.53 0.30 -0.09 0.12 -0.33 0.14 -0.23 0.05 -0.32 -0.13 

  Overdisp; 𝑟𝑟 0.67 0.07 0.54 0.82 0.44 0.04 0.37 0.52 0.51 0.03 0.46 0.58 0.66 0.04 0.58 0.75 

Detection Beaufort 0-2 5.38 0.03 5.32 5.43 5.61 0.03 5.56 5.66         
  Beaufort 3-6 5.28 0.04 5.21 5.36 5.14 0.02 5.10 5.17         
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Table 13-5. Parameter estimates by year from the boat and high resolution digital video aerial surveys, using a Negative Binomial distribution to model counts of Common 
Loons. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, and all abundance parameters are on the log scale. Dst = 
distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, and Beaufort sea state 3-6 are rough seas (as opposed to 
calm, 0-2). The posterior mean for covariates where the 95% Bayesian credible interval (BCI) does not overlap zero are in bold italics.  
 

Common Loons 
Boat Aerial 

First year Second year First year Second year 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance Intercept (survey 1) -0.94 0.31 -1.54 -0.35 1.23 0.29 0.66 1.80 -1.98 0.48 -2.93 -1.03 -2.37 0.16 -2.70 -2.06 

  Intercept (survey 2) 0.26 0.17 -0.06 0.60 0.78 0.26 0.27 1.28 -2.00 0.24 -2.47 -1.54 -2.24 0.25 -2.74 -1.76 

  Intercept (survey 3) 0.54 0.24 0.08 1.02 0.52 0.19 0.15 0.90 -4.37 0.51 -5.41 -3.40 -5.73 0.46 -6.67 -4.86 

  Dst -0.15 0.13 -0.41 0.11 -0.79 0.22 -1.22 -0.34 -0.21 0.15 -0.52 0.08 0.07 0.11 -0.14 0.29 

  Slp -0.04 0.09 -0.21 0.14 0.28 0.10 0.09 0.48 0.05 0.10 -0.14 0.24 -0.30 0.14 -0.57 -0.04 

  Grn -0.07 0.09 -0.25 0.11 0.42 0.12 0.18 0.67 -0.06 0.10 -0.26 0.13 0.22 0.11 0.01 0.46 

  Sst 0.88 0.16 0.57 1.21 0.71 0.15 0.41 1.00 -0.04 0.26 -0.55 0.46 0.81 0.20 0.41 1.21 

  Sal -0.45 0.15 -0.76 -0.15 0.23 0.26 -0.28 0.71 -0.07 0.28 -0.62 0.49 -0.39 0.13 -0.65 -0.14 

  Overdisp; 𝑟𝑟 0.51 0.07 0.39 0.66 0.29 0.03 0.24 0.35 0.26 0.07 0.17 0.42 0.40 0.21 0.17 0.97 

Detection Beaufort 0-2 5.32 0.04 5.25 5.40 5.47 0.04 5.41 5.54         
  Beaufort 3-6 5.20 0.06 5.09 5.31 5.09 0.02 5.05 5.13         
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Table 13-6. Parameter estimates by year from the boat and high resolution digital video aerial surveys, using a Negative Binomial distribution to model counts of Red-
throated Loons. SD is the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter, and all abundance parameters are on the log. Dst 
= distance to shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, and Beaufort sea state 3-6 are rough seas (as opposed to 
calm, 0-2). The posterior mean for covariates where the 95% Bayesian credible interval (BCI) does not overlap zero are in bold italics. There was only 1 observed Red-throated 
Loon in the second year aerial surveys, so no model was fit to these data. 
 
 
  

Red-throated Loons 
Boat Aerial 

First year Second year First year Second year 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance Intercept (survey 1) -0.99 0.37 -1.72 -0.30 -2.29 0.33 -2.94 -1.66 -1.88 0.90 -3.66 -0.15 NA NA NA NA 

  Intercept (survey 2) -1.43 0.27 -1.98 -0.91 0.01 0.22 -0.42 0.44 -2.60 0.45 -3.48 -1.72 NA NA NA NA 

  Intercept (survey 3) 0.85 0.32 0.24 1.50 0.33 0.16 0.03 0.64 -6.12 0.87 -7.88 -4.48 NA NA NA NA 

  Dst -0.78 0.17 -1.12 -0.46 -1.13 0.18 -1.50 -0.80 -0.62 0.31 -1.25 -0.03 NA NA NA NA 

  Slp -0.30 0.12 -0.53 -0.07 -0.12 0.09 -0.30 0.06 -0.26 0.17 -0.59 0.06 NA NA NA NA 

  Grn -0.08 0.13 -0.33 0.17 0.23 0.09 0.05 0.41 -0.05 0.17 -0.38 0.26 NA NA NA NA 

  Sst -0.22 0.17 -0.56 0.11 0.33 0.12 0.09 0.58 -0.34 0.46 -1.22 0.58 NA NA NA NA 

  Sal -0.92 0.25 -1.43 -0.45 -0.54 0.22 -0.98 -0.08 0.21 0.54 -0.85 1.28 NA NA NA NA 

  Overdisp; 𝑟𝑟 0.35 0.05 0.26 0.46 0.65 0.09 0.50 0.84 0.06 0.01 0.04 0.08 NA NA NA NA 

Detection Beaufort 0-2 5.34 0.05 5.25 5.44 5.70 0.04 5.63 5.77     
      Beaufort 3-6 5.20 0.05 5.10 5.30 5.26 0.04 5.19 5.33     
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Table 13-7. Parameter estimates by year from the boat and high resolution digital video aerial surveys, using a Negative Binomial distribution to model counts of  alcids. SD is 
the standard deviation, 2.5% and 97.5% are the respective quantiles, 𝒓𝒓 is the overdispersion parameter,  and all abundance parameters are on the log scale. Dst = distance to 
shore, Slp = slope of the seafloor, Grn = sediment grain size, Sst = sea surface temperature, Sal = salinity, and Beaufort sea state 3-6 are rough seas (as opposed to calm, 0-2). The 
posterior mean for covariates where the 95% Bayesian credible interval (BCI) does not overlap zero are in bold italics. There was only 1 observed Red-throated Loon in the 
second year aerial surveys, so no model was fit to these data. 
 

Alcids 
Boat Aerial 

First year Second year First year Second year 

Component Term Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 

Abundance Intercept 1.00 0.12 0.78 1.24 -0.51 0.16 -0.83 -0.19 -1.71 0.12 -1.95 -1.47 -2.95 0.21 -3.35 -2.52 

  Dst 0.54 0.15 0.24 0.84 -1.45 0.24 -1.93 -0.94 0.04 0.13 -0.20 0.29 -0.61 0.28 -1.18 -0.07 

  Slp 0.13 0.10 -0.06 0.34 -0.03 0.14 -0.30 0.27 -0.19 0.12 -0.43 0.05 -0.43 0.23 -0.88 0.02 

  Grn -0.20 0.12 -0.44 0.04 0.13 0.19 -0.23 0.50 0.26 0.14 -0.02 0.53 0.02 0.25 -0.47 0.50 

  Sst -0.28 0.13 -0.54 -0.02 0.00 0.18 -0.37 0.34 0.65 0.15 0.36 0.95 -0.58 0.23 -1.03 -0.13 

  Sal -0.09 0.11 -0.30 0.13 2.06 0.26 1.53 2.54 0.79 0.12 0.55 1.03 0.38 0.29 -0.18 0.95 

  Overdisp; 𝑟𝑟 0.38 0.05 0.29 0.49 0.25 0.04 0.18 0.33 0.08 0.01 0.06 0.10 0.02 fixed     

Detection Beaufort 0-2 5.19 0.04 5.12 5.27 5.61 0.05 5.52 5.72         
  Beaufort 3-6 4.56 0.06 4.45 4.67 5.54 0.04 5.46 5.61         
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Table 13-8. Bayesian p-values for the abundance and detection components of the models. Values close to 0.5 indicate good 
model fit. 
 

Group Sub-group 
Boat Aerial 

First year Second year First year Second year 

Abundance Detection Abundance Detection Abundance Abundance 

Terns   0.58 0.50 0.51 0.39 0.39 0.58 

Gannets   0.66 0.45 0.71 0.75 0.99 0.72 

Loons All 0.5 0.81 0.6 0.99 0.85 0.65 

  COLO 0.53 0.55 0.63 0.88 0.42 0.42 

  RTLO 0.55 0.62 0.55 0.97 0.51 NA 

Alcids   0.52 0.54 0.51 0.58 0.48 0.49 

 
 
 
 
 
 

 
Table 13-9. Observed values in the digital aerial surveys for year 2, comparing the larger study area (MABS) to surveys of 
Maryland (MD WEA and MD extension transects). Note the tern analysis here includes the August 2013 surveys.    
 

Group MABS MD 

Terns 223 155 

Gannets 1612 506 

Loons 2062 423 

Alcids 102 7 
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Table 13-10. Parameter estimates for terns, gannets, and loons for the larger study area (MABS) and surveys including only Maryland (MD WEA and MD extension transects). 
Estimates considered significantly different from 0 are in bold. All results are for the same seasons as Table 13-1, but only the aerial data for the second year results are shown 
here. For this analysis of terns, we included the August 2013 survey because it included all of the Maryland waters (the survey is also included in the MABS study area analysis, 
which changed the parameter estimate slightly from those presented in Table 13-1). Salinity was not included in the Northern Gannet model.   
 

Term 

Terns Gannets Loons 

MABS MD MABS MD MABS MD 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Intercept; α0 -3.88 0.21 -2.86 0.22 -0.80 0.06 -0.62 0.10 -0.21 0.04 -0.54 0.07 

Dst; α1 -2.17 0.17 -1.77 0.17 -0.79 0.07 -0.74 0.11 -0.23 0.04 0.00 0.08 

Slp; α2 0.16 0.08 0.27 0.10 0.26 0.06 0.13 0.09 -0.15 0.04 -0.11 0.07 

Grn; α3 0.13 0.09 0.07 0.09 0.15 0.06 0.03 0.09 0.11 0.04 -0.21 0.07 

Sst; α4 0.03 0.1 -0.19 0.14 -0.65 0.08 -0.62 0.12 -0.41 0.04 -0.42 0.07 

Sal; α5 -0.42 0.14 -0.43 0.14 -  -  -  -  0.16 0.04 -0.05 0.06 

Overdisp. 0.43 0.09 1.02 0.46 0.14 0.01 0.19 0.02 0.49 0.03 0.83 0.15 
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