Assessing contemporary methylmercury exposure to resident and migratory bird species of Belize

Christopher J. Sayers II, Helen Yurek, Kevin Regan, David C. Evers

Biodiversity Research Institute (BRI) is a 501(c)3 nonprofit organization located in Portland, Maine, USA. Founded in 1998, BRI is dedicated toward supporting global health through collaborative ecological research, assessment of ecosystem health, improving environmental awareness, and informing science-based decision making. BRI's research efforts emphasize conservation biology issues around the world.

To obtain copies of this report contact: David C. Evers Biodiversity Research Institute 276 Canco Road Portland, Maine, USA 04103 +1 (207) 839–7600 ext. 221 david.evers@briwildlife.org www.briwildlife.org

Front cover photos: Secondary forest habitat present at the Toucan Ridge Ecology and Education Society (TREES, top), Ruddy Woodcreeper (*Dendrocincla homochroa*, bottom left), and Orange-breasted Falcon (*Falco deiroleucus*, bottom right). All photos in this report were taken by Christopher Sayers.

Assessing contemporary methylmercury exposure to resident and migratory bird species of Belize

Submitted by:

Christopher Sayers Biodiversity Research Institute 276 Canco Road Portland, Maine, USA 04103 +1 (207) 839–7600 chris.sayers@briwildlife.org www.briwildlife.org/TRACE

Submitted on:

February 20, 2022

Suggested Citation: Sayers CJ II, Yurek H, Regan K, Evers DC. 2021. Assessing contemporary methylmercury exposure to resident and migratory bird species of Belize. Report BRI 2022-06, Biodiversity Research Institute, Portland, Maine, USA.

Abstract

Anthropogenic mercury (Hg) is a systemic environmental toxin throughout the Neotropics that may pose population-level impacts to fish- and invertebrate-eating bird species. During a rapid avian Hg assessment conducted in the wet season of 2021 by the Biodiversity Research Institute and the Foundation for Wildlife Conservation, we found 72% of well-sampled species ($n \ge 10$) had lower mean Hg concentrations than in previous surveys conducted from 2007–2019, while 80% of sites had higher mean Hg concentrations. When excluding poorly-sampled species ($n \le$ 10) from our most recent survey, only the American Pygmy Kingfisher (*Chloroceryle aenea*) had blood Hg concentrations that exceeded adverse effect thresholds associated with reproductive impairment. Previous Neotropical bird Hg biomonitoring efforts (Sayers et al. *In review*) highlight central Belize as a biological Hg hotspot, but this contemporary assessment may suggest that Hg biomagnification is deescalating or atmospheric Hg deposition is decreasing throughout the Yucatán Peninsula. To expand our understanding of these evolving dynamics in Belize, as a function of BRI's on-the-ground involvement, several Belizean conservation organizations are actively contributing to bird tissue collection efforts in collaboration with the Tropical Research for Avian Conservation and Ecotoxicology (TRACE) Initiative.

Background

Mercury (Hg) is a widely-distributed and persistent environmental pollutant with detrimental implications for global health. International government organizations to curtail global Hg emissions, such as the United Nations Minamata Convention on Mercury, have made transformative progress in generating the research and legislation necessary to regulate polluting industries throughout the Global North. However, such action is severely lacking in tropical nations despite rising emissions throughout the Global South. As a function of rising gold demand and price since the beginning of the century, the rapid expansion of artisanal and small-scale gold mining (ASGM) has catapulted the global tropics as the leading contributor of environmental Hg pollution (UNEP 2019). This paradigm shift is cause for major concern in how we consider and assess Hg health risks to tropical ecosystems and their inhabitants.

Tropical wet forest biomes maintain biogeochemical conditions, such as elevated precipitation and seasonal flooding, that enhance ASGM emissions by promoting Hg bioavailability. Recent work by Sayers et al. (*In review*) and Gerson et al. (2022) have begun to pinpoint which biotic and abiotic factors predispose biodiversity to high Hg exposure — using birds as accessible and economical bioindicators. Tropical Hg biomagnification is expected to intensify for 1) sites within close proximity (≈ 2 km) to artisanal gold mining or processing zones, 2) sites with intact, robust forest canopies, 3) sites where Hg methylating habitats, such as wetlands, are abundant throughout the landscape, and 4) organisms feeding at high trophic

positions. To summarize, fish- and invertebrate-eating bird species foraging within primary rainforest or wetland habitats adjacent to ASG mining or processing sites are predicted to have exceedingly high blood and feather Hg concentrations relative to the remaining avian community. There is now mounting evidence associating high Hg exposure with reproductive, behavioral, immunological, neurological, and physiological impairment in wildlife (Depew et al. 2012; Dietz et al. 2013; Scheuhammer et al. 2015), particularly birds (Evers et al. 2005; Ackerman et al. 2016; Fuchsman et al. 2017; Evers 2018; Whitney and Cristol 2018). And while these negative effects are seldom applied at the population level, Hg exposure could be a "silent" contributor to avian biodiversity loss throughout the Americas (Rosenberg et al. 2019; Stouffer et al. 2020; Sherry 2021) — highlighting the need for consistent, widespread Hg monitoring.

Since 2007, the Biodiversity Research Institute (BRI) has collaborated with numerous conservation organizations in Belize to begin understanding Hg dynamics within terrestrial tropical ecosystems — using resident and migratory bird species as key bioindicators. Preliminary objectives included developing Hg exposure profiles for terrestrial bird species, documenting geographic Hg hotspots and important methylating habitats, and communicating findings to government agencies and local communities to raise awareness about the impacts of Hg on human, wildlife, and ecosystem health. After over a decade of infrequent avian Hg sampling expeditions and the analysis of over 450 blood and feather samples, central Belize has emerged as a biological Hg hotspot, which has produced elevated concentrations across a variety of avifauna (Evers and Burton 2020; Sayers et al. *In review*).

While previous work has defined a valuable baseline from which to compare future data, the data showcased in this report represent the most recent Hg assessment for central Belize and can help illustrate how avian Hg concentrations and risk have changed over the past 15 years.

Objectives

- 1. Generate contemporary avian Hg exposure profiles and risk assessments
- 2. Quantify how avian Hg exposure and risk are changing through time
- 3. Identify several relatively common, broadly distributed resident bird species to serve as future sentinel Hg bioindicators across Latin America
- Create and strengthen scientific partnerships with bird conservation organizations by holding in-person meetings and lectures

Methods

Study areas

To collect avian tissue samples for later Hg analysis, we conducted ground-level mist net surveys from August 25 through October 15, 2021 at the Tropical Education Center, Runaway Creek Nature Reserve, Monkey Bay Wildlife Sanctuary, and Toucan Ridge Ecology and Education Society with primary assistance from staff at the Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize. We selected study locations in a variety of habitats including riparian scrub, pine savanna, and secondary forest. Site-specific capture and habitat information are featured in Appendix 1.

Figure 1. Karst hill broadleaf forest, pine savanna, and seasonal wetland matrix at Runaway Creek Nature Reserve (left) and mist net array along Sibun River (right).

Sample Collection

We captured birds using 12 m mist nets and identified individuals to an appropriate species, sex, age, and molt cycle using a local bird field guide (Fagan and Komar 2016) and either a calendar-based, or the preferred, Wolfe-Ryder-Pyle (WRP) cycle-based age-classification system (Wolfe et al. 2010; Johnson et al. 2011; Tórrez and Arendt 2012, 2017; Pyle et al. 2016) described for Neotropical bird families in Johnson and Wolfe (2017). Whenever possible, we banded all taxa, excluding hummingbirds (Trochilidae), with an aluminum leg band from the US Fish and Wildlife Service and the National Band & Tag Company

(https://www.nationalband.com/, Newport, Kentucky, USA). In unique circumstances when we

did not possess aluminum leg bands in the proper size, we banded individuals with a unique combination of colored plastic legs bands and assigned the corresponding samples a unique identification number. We also measured and assessed birds for feather molt and wear, skull ossification, fat stores, muscle mass, wing chord, tarsus length, bill dimensions, tail length, body mass, and reproductive stage via cloacal protuberance and brood patch.

We followed tissue collection, preparation, and storage methods provided by the Biodiversity Research Institute (Evers et al. 2021). Whenever possible, we collected 30–60 μ L of blood from the cutaneous ulnar vein using 75 μ L heparinized capillary tubes, sealed tubes at both ends using CritocapsTM or CritosealTM, placed tubes into a plastic vacutainer, and stored samples in a cooler with ice packs. We transferred blood samples into a freezer within 8 hours of collection where they were stored below –4 °C until laboratory analysis. For feather sampling, we collected the two outermost tail feathers and 5–6 flank feathers and stored samples in paper coin envelopes at ambient temperature.

While we collected multiple tissue types from each individual to obtain a holistic sample, we only showcase the whole blood data in this report. Whole blood best represents recent dietary Hg exposure from days to weeks, which makes it an ideal sampling matrix for rapid site assessments (Evers et al. 2005; Evers 2018).

Figure 2. Preparing a Green Kingfisher (*Chloroceryle americana*) for blood sampling via brachial venipuncture.

Laboratory analysis

We performed total mercury analyses at the Biodiversity Research Institute Toxicology Lab (Portland, Maine, USA) using a thermal decomposition and atomic absorption spectrophotometry technique with a Nippon MA-3000 direct Hg analyzer. We assumed that nearly all total mercury (THg, > 95%) in whole blood (Rimmer et al. 2005; Edmonds et al. 2010) to be in the bioavailable, methylmercury (MeHg) form. Therefore, all sampled tissue concentrations represent MeHg contamination of Neotropical avifauna. We followed United States Environmental Protection Agency (EPA) SW-846 Method 7473, "Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry" (USEPA 1998), and used quality control methods (including certified reference materials DOLT-5 and ERM-CE464) to ensure consistent analytical precision and accuracy. We excluded any sample that registered below the analyzer's lower detection limit (0.05 ng THg) from the final database.

Results and Discussion

Hg exposure and risk

We present a collective database containing 546 whole blood THg samples from 7 orders, 27 families, and 86 bird species throughout central Belize collected from 2007–2021. The most well-sampled bird families included New World warblers (Parulidae; n = 170), tyrant flycatchers (Tyrannidae; n = 64), woodcreepers (Furnariidae; n = 45), tanagers (Thraupidae; n = 44), wrens (Troglodytidae; n = 35), manakins (Pipridae; n = 32), vireos (Vireonidae; n = 28), and kingfishers (Alcedinidae; n = 25).

Recent research on Neotropical bird Hg exposure documents consistently elevated Hg concentrations in bird communities of the Yucatán Peninsula from 2007–2019 and has highlighted central Belize as a biological Hg hotspot relative to other regions throughout the Neotropical realm (Sayers et al. *In review*). Belize may face elevated Hg deposition because of gaseous elemental Hg emissions from local landfill incineration, coal combustion in central Mexico (UNEP 2019), as well as industrial and artisanal gold mining in the Chiquibul/Maya Mountains (Cornec 2010; Briggs et al. 2013; Manzanero 2014; Rath 2016). In addition, there is an abundance of key Hg methylating habitats at some of the Belize sampling sites, such as

seasonal wetlands at Runaway Creek Nature Reserve, that we expect can readily convert inorganic emissions to a bioavailable form.

Our contemporary Hg assessment conducted in the wet season of 2021 opposes this present school of thought by providing generally positive, but paradoxical, results for Hg biogeochemical cycling in Belize. We found that 72% of well-sampled bird species ($n \ge 10$) had lower mean Hg concentrations relative to previous surveys conducted from 2007–2019 (Fig. 1), while 80% of sites had higher mean Hg concentrations (Fig. 2). Perhaps the most valuable way of assessing these results is to put them into context of established adverse effect thresholds. In our contemporary survey, the American Pygmy Kingfisher (*Chloroceryle aenea*) was the only species that exhibited blood Hg concentrations associated with a 10% loss in reproductive success (Fig. 3; Jackson et al. 2011). This is a marked improvement compared to historical surveys, in which a total of 4 species exceeded reproductive impairment thresholds (Fig. 3). Therefore, these factors may indeed suggest that avian Hg risk and biomagnification are deescalating or atmospheric Hg deposition is decreasing throughout the Yucatán Peninsula — uplifting, but unexpected findings that are deserving of further scrutiny.

Figure 1. Arithmetic mean \pm standard deviation of whole blood total mercury (THg) concentrations (μ g/g) among bird species sampled throughout central Belize from 2007–2021. The dashed horizontal lines indicate risk thresholds defined by Jackson et al. (2011) where ≥ 0.7 μ g/g ww represents a $\geq 10\%$ decline in reproductive success (yellow) and $\geq 1.2 \mu$ g/g ww represents a $\geq 20\%$ decline in reproductive success (orange).

Figure 2. Arithmetic mean \pm standard deviation of whole blood total mercury (THg) concentrations (μ g/g) among sites sampled throughout central Belize from 2007–2021. The yellow dashed horizontal line indicates a risk threshold defined by Jackson et al. (2011) where \geq 0.7 μ g/g ww represents a \geq 10% decline in reproductive success.

Figure 3. Proportion of Neotropical bird species sampled for whole blood throughout central Belize from 2007–2021 that may be subject to different degrees of reproductive failure via MeHg exposure. Species with fewer than 10 samples were excluded. Whole blood risk categories defined by Jackson et al. (2011) include: $< 0.7 \ \mu g/g \ ww$ (gray, represents a $\le 10\%$ decline in reproductive success), $\ge 0.7 \ \mu g/g \ ww$ (yellow, represents a $\ge 10\%$ decline in reproductive success), $\ge 1.2 \ \mu g/g \ ww$ (orange, represents a $\ge 20\%$ decline in reproductive success), $\ge 1.7 \ \mu g/g \ ww$ (red, represents a $\ge 30\%$ decline in reproductive success), and $\ge 2.2 \ \mu g/g \ ww$ (black, represents a $\ge 40\%$ decline in reproductive success).

Figure 4. Map displaying total mercury (THg) concentrations (μ g/g) of 546 whole blood samples from 86 bird species collected throughout central Belize collected from 2007–2021. Map **A**) displays THg concentrations on a country aggregate, while **B**) displays THg concentrations from sites i) Monkey Bay Wildlife Sanctuary, ii) Tropical Education Center, iii) Sibun River, iv) Site B, and v) Heron Roost.

Strengthening scientific collaborations

From September 27–October 1 and October 11–15, 2021, field biologists from University of Belize Environmental Research Institute, BRI, Runaway Creek Nature Reserve, Monkey Bay Wildlife Sanctuary, Belize Audubon Society, and Toledo Institute for Development and Environment (TIDE) convened at TREES for two overnight workshops to learn hands-on bird banding skills while operating an established Monitoreo de Sobrevivencia Invernal (MoSI, see https://www.birdpop.org/pages/mosi.php) station (Fig. 5). This event series provided the perfect venue to unite the majority of the Belizean bird banding community, communicate essential bird

banding theory and field skills, and convey the mission and principal findings of BRI's ongoing Neotropical Hg research. Specifically, as part of his role as workshop co-instructor, Christopher Sayers gave multiple presentations on BRI's previous bird sampling throughout Central America and the Caribbean — highlighting a newly-developed collaborative opportunity for attending organizations.

To overcome previous methodological inconsistencies and inferential uncertainties in the field of tropical ecotoxicology, BRI has developed an international, collaborative data-sharing platform known as the Tropical Research for Avian Conservation and Ecotoxicology (TRACE) Initiative (see https://www.briwildlife.org/TRACE). Through the equitable transfer of funding, equipment, data, and authorship among collaborators, TRACE seeks to better inform biodiversity conservation efforts through the understanding of the prevalence, spatiotemporal distribution, toxicokinetics, and biogeochemistry of Hg throughout the tropics — using birds as a convenient, ecologically important, and charismatic proxy. Such standardized information can then be used for long-term Hg monitoring purposes to inform local, national, and international government entities, including Parties of the United Nations Minamata Convention on Mercury.

During the cumulative 10 workshop days, leaders and participants assisted Christopher in collecting over 150 blood and feather samples from resident and migratory bird species. As a result, attendees gained the tissue extraction skills necessary to contribute samples to the TRACE Initiative, as well as pursue research of their own design. As a direct result of this workshop series, BRI is actively collaborating with Foundation for Wildlife Conservation, Monkey Bay Wildlife Sanctuary, University of Belize Environmental Research Institute, Belize Audubon Society, TIDE, Corozal Sustainable Future Initiative (CSFI), and TREES to collect avian tissue samples for later Hg analysis via the TRACE Initiative. Bird Hg samples collected at their respective reserve systems will greatly expand our knowledge about the spatial distribution of Hg throughout Belize, and aid us in identifying biological hotspots across different habitats.

Figure 5. Group pictures of bird Hg sampling training held at Toucan Ridge Ecology and Education Society.

Conclusions

Given Belize's interest in ratifying the United Nations Minamata Convention on Mercury and membership of the newly organized Caribbean Region Mercury Monitoring Network (see https://briwildlife.org/hgcenter/crmmn/; Evers and Burton 2021), Belize is uniquely positioned throughout the Neotropics to serve as a long-term study area for assessing the spatiotemporal trends and impacts of Hg exposure to Neotropical birds. Study sites including the Runaway Creek Nature Reserve and TREES provide an ideal framework to build local capacity on bird banding, population science, and ecotoxicological sampling via their educational outreach programs, MoSI stations, and newly-adopted TRACE Initiative.

Recommendations

- Continue monitoring avian Hg exposure at Runaway Creek Nature Reserve, Tropical Education Center, Monkey Bay Wildlife Sanctuary, and Toucan Ridge Ecology and Education Society as long-term study sites.
- 2. Expand avian Hg biomonitoring efforts to incorporate sites within the Chiquibul/Maya Mountains to assess potential biotic impacts of artisanal gold mining Hg emissions.
- Prioritize sampling abundant and widespread invertivore and piscivore sentinel species that exhibit elevated Hg concentrations, including American Pygmy Kingfisher (*Chloroceryle aenea*), Hooded Warbler (*Setophaga citrina*), and Tawny-winged Woodcreeper (*Dendrocincla anabatina*), to broaden the taxonomic and geographic applicability of Hg data from Belize (Appendix 3).
- 4. Approach Hg sampling using a "food web strategy" by taking soil, leaf, ant, and arachnid samples to better understand avian Hg biomagnification dynamics using stable Hg isotope signatures.

Acknowledgements

This effort would not have been possible without staff assistance from the Foundation for Wildlife Conservation, Tropical Education Center, Monkey Bay Wildlife Sanctuary, Toucan Ridge Ecology and Education Society, and University of Belize Environmental Research Institute. We thank Reynold Cal, Stevan Reneau, Gilroy "Niko" Welch, Wilber Martínez, Kayla Hartwell, Abidas Ash, Finola Fogarty, and Mat Charette for field assistance; Kayla Hartwell, Juan Carlos, Abidas Ash, and Mat Charette for organizing logistics; and Matthew Miller and Mat Charette for granting site access. We especially thank the Biodiversity Research Institute and the Cornell Lab of Ornithology for funding this project.

Figure 6. Barred Antshrike (Thamnophilus doliatus) at Runaway Creek Nature Reserve.

References

- Ackerman JT, Eagles-Smith CA, Herzog MP, et al (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769. <u>https://doi.org/10.1016/j.scitotenv.2016.03.071</u>
- Briggs VS, Mazzotti FJ, Harvey RG, et al (2013) Conceptual ecological model of the Chiquibul/Maya Mountain Massif, Belize. Hum Ecol Risk Assess 19:317–340. https://doi.org/10.1080/10807039.2012.685809
- Cornec JH (2010) Gold potential of the Maya Mountains: Belize's best kept secret? <u>https://ambergriscaye.com/art/pdfs/Gold_Potential_of_the_Maya_Mountains-2010.pdf</u>. Accessed 26 September 2021
- Depew DC, Basu N, Burgess NM, et al (2012) Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. Environ Toxicol Chem 31:1536–1547. https://doi.org/10.1002/etc.1859
- Dietz R, Fort J, Sonne C, et al (2021) A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalves. Environ Int 146:106178. https://doi.org/10.1016/j.envint.2020.106178
- Edmonds ST, Evers DC, Cristol DA, et al (2010) Geographic and seasonal variation in mercury exposure of the declining Rusty Blackbird. Condor 112:789–799. https://doi.org/10.1525/cond.2010.100145
- Evers DC (2018) The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation. In: Dellasala DA, Goldstein MI (eds) Encyclopedia of the anthropocene, vol. 5. Elsevier, New York, pp 181–194

- Evers DC, Burgess NM, Champoux L, et al (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–221. <u>https://doi.org/10.1007/s10646-004-6269-7</u>
- Evers DC, Burton M (2020) Mercury Monitoring—Belize. A Series Publication for the Caribbean Region Mercury Monitoring Network. Science Communications Series BRI 2020-24, Biodiversity Research Institute, Portland, Maine. <u>https://briwildlife.org/wp-content/uploads/2021/06/Belize-Biomonitoring-Brochure-0924</u> 2020.pdf. Accessed 7 February 2022
- Evers DC, Burton M (2021) Caribbean Region Mercury Monitoring Network. Science Communications Series BRI 2021-07, Biodiversity Research Institute, Portland, Maine. <u>https://briwildlife.org/wp-content/uploads/2021/07/FINAL-Antigua-Biomonitoring-Caribbean-Region-07-22-21-1.pdf</u>. Accessed 7 February 2022
- Evers DC, Savoy LJ, DeSorbo CR, Regan K, Persico C, Sayers CJ II (2021) Bird field sampling methods: collection of tissues for mercury analysis. Report BRI 2021-03, Biodiversity Research Institute, Portland, Maine.

https://briwildlife.org/wp-content/uploads/2021/07/Bird-Field-Sampling-Methods.pdf

- Fagan J, Komar O (2016) Peterson Field Guide to Birds of Northern Central America. Mariner Books, Boston
- Fuchsman PC, Brown LE, Henning MH, et al (2017) Toxicity reference values for methylmercury effects on avian reproduction: critical review and analysis. Environ Toxicol Chem 36:294–319. <u>https://doi.org/10.1002/etc.3606</u>
- Gerson JR, Szponar N, Zambrano AA, et al (2022) Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat Commun 13:559. https://doi.org/10.1038/s41467-022-27997-3
- Jackson AK, Evers DC, Etterson MA, et al (2011) Mercury exposure affects the reproductive success of a free-living terrestrial songbird, the Carolina wren (*Thryothorus ludovicianus*). Auk 128:759–769. <u>https://doi.org/10.1525/auk.2011.11106</u>
- Johnson EI, Wolfe JD (2017) Molt in Neotropical Birds: Life History and Aging Criteria, first edition. CRC Press, New York. <u>https://doi.org/10.4324/9781315119755</u>
- Johnson EI, Wolfe JD, Brandt Ryder T, Pyle P (2011) Modifications to a molt-based ageing system proposed by Wolfe et al. (2010). J F Ornithol 82:422–424. https://doi.org/10.1111/j.1557-9263.2011.00345.x
- Manzanero R (2014) Illegal Gold Panning on the Highlands of the Chiquibul/Maya Mountains. Friends for Conservation and Development, pp 1–4
- Pyle P, Tranquillo K, Kayano K, Arcilla N (2016) Molt patterns, age criteria, and molt-breeding dynamics in American Samoan landbirds. Wilson J Ornithol 128:56–59. https://doi.org/10.1676/wils-128-01-56-69.1
- Rath T (2016) In Belize, All That Is Gold Does not Glitter: The looting, desecration and annexation of the Chiquibul Forest in Belize, Central America. Maptia. <u>https://maptia.com/tonyrath/stories/in-belize-all-that-is-gold-does-not-glitter</u>. Accessed 26 September 2021
- Rimmer CC, Mcfarland KP, Evers DC, et al (2005) Mercury concentrations in Bicknell's thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology 14:223–240
- Rosenberg KV, Dokter AM, Blancher PJ, et al (2019) Decline of the North American avifauna. Science 366:120–124. <u>https://doi.org/10.1126/science.aaw1313</u>

- Sayers CJ II, Evers DC, Ruiz-Gutierrez V (*In review*) Mercury exposure in Neotropical birds: A review and prospectus.
- Scheuhammer A, Braune B, Chan HM, et al (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509–510:91–103. https://doi.org/10.1016/j.scitotenv.2014.05.142
- Sherry TW (2021) Sensitivity of tropical insectivorous birds to the anthropocene: a review of multiple mechanisms and conservation implications. Front Ecol Evol 9:1–20. https://doi.org/10.3389/fevo.2021.662873
- Stouffer PC, Jirinec V, Rutt CL, et al (2020) Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol Lett 24(2):186–195. <u>https://doi.org/10.1111/ele.13628</u>
- Tórrez M, Arendt WJ (2012) Claves y pautas gráficas en la determinación de edad en dos especies del género Thryothorus (Troglodytidae) en el Pacifico de Nicaragua. Ornitol Neotrop 23:23–32. <u>https://www.fs.fed.us/global/iitf/pubs/ja_iitf_2011_Torrez001.pdf</u>
- Tórrez MA, Arendt WJ (2017) La muda en especies de aves selectas de Nicaragua. UCA Publicaciones, Managua. https://data.fs.usda.gov/research/pubs/iitf/bw_iitf_2017_torrez_arendt001.pdf
- UNEP (United Nations Environment Programme) (2019) Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch, Geneva
- US EPA (US Environmental Protection Agency) (1998) Method 7473 (SW-846): mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry, revision 0. Washington, DC. https://www.epa.gov/sites/default/files/2015-07/documents/epa-7473.pdf. Accessed 3 January 2022
- Whitney MC, Cristol DA (2017) Impacts of sublethal mercury exposure on birds: a detailed review. Reviews of Environmental Contamination and Toxicology 244:113–163
- Wolfe JD, Ryder TB, Pyle P (2010) Using molt cycles to categorize the age of tropical birds: an integrative new system. J F Ornithol 81:186–194. https://doi.org/10.1111/j.1557-9263.2010.00276.x

Appendix 1. Total mercury (THg) concentrations (μ g/g) among all 7 sites sampled throughout Belize from 2007–2021. Number of species sampled, sample size (*n*), arithmetic mean ± standard deviation (SD), range, and coefficient of variation (CV) are summarized by site, habitat, and year. A dash (–) indicates there are no data to report.

Site (latitude, longitude)	Habitat	Year	Species sampled	п	Arithmetic mean ± SD	Range	CV
Belize Foundation for Research & Environmenta I Education (16.55578, -88.70777)	Shade coffee/cacao plantation; secondary forest	2007–2019	13	65	0.155 ± 0.402	0.010–3.195	258.9%
Monkey Bay Wildlife	River-edge forest;	2007–2019	11	28	0.066 ± 0.060	0.008-0.222	90.4%
Sanctuary (17.30258, –88.55478)	riparian thickets	2021	12	19	0.201 ± 0.219	0.001-0.741	108.9%
Runaway Creek Nature	Riparian thickets;	2007–2019	11	54	0.118 ± 0.134	0.005–0.57	112.9%
ReserveHero n Roost (17.287262, -88.44553)	secondary forest	2021	5	5	0.179 ± 0.202	0.004-0.525	113.1%
Runaway Creek Nature	Tropical lowland	2007–2019	18	32	0.060 ± 0.068	0.005-0.37	114.3%
ReserveSibu n River (17.358047, -88.47801)	evergreen forest; second-growt h shrub	2021	17	39	0.083 ± 0.070	0.003–0.234	83.9%
Runaway Creek Nature	Secondary forest; low,	2007–2019	49	150	0.259 ± 0.379	0.003-2.659	146.4%
ReserveSite B (17.313222, -88.460329)	seasonally wet grassland	2021	25	41	0.116 ± 0.176	0.002-0.719	151.9%
Toucan Ridge Ecology and Education Society (17.05231, -88.56773)	Secondary forest; tropical lowland evergreen forest	2021	14	21	0.040 ± 0.041	0.002–0.138	101.8%
Tropical Education	Secondary forest;	2007–2019	19	35	0.062 ± 0.081	0.001-0.293	129.5%
Center (17.35812, -88.54162)	pine-oak forest; gallery forest	2021	23	57	0.150 ± 0.232	0.001-1.187	154.9%

Appendix 2. Whole blood total mercury (THg) concentrations (μ g/g) among all 86 Neotropical resident and migratory bird species sampled throughout Belize from 2007–2021. Sample size (*n*), arithmetic mean \pm standard deviation (SD), range, and coefficient of variation (CV) are summarized by family, species, and year. Species are arranged alphabetically by order and family. A dash (–) indicates there are no data to report.

Family	Common name	Latin name	Year	п	Arithmetic mean ± SD	Range	CV
Alcedinidae (Kingfishers)	American Pygmy Kingfisher	Chloroceryle aenea	2007–2019	14	0.523 ± 0.418	79.9%	0.069–1.37
			2021	7	0.683 ± 0.386	56.4%	0.159–1.187
Alcedinidae (Kingfishers)	Green Kingfisher	Chloroceryle americana	2007–2019	1	0.515	_	—
			2021	3	0.446 ± 0.048	10.7%	0.395-0.49
Caprimulgid ae (Nightjars and Allies)	Common Pauraque	Nyctidromus albicollis	2021	1	0.036	_	_
Cardinalidae (Cardinals and Allies)	Blue Bunting	Cyanocompsa parellina	2007–2019	1	0.045	_	_
			2021	1	0.007	—	_
	Gray-throated Chat	Granatellus sallaei	2021	1	0.14	—	—
	Red-throated Ant-Tanager	Habia fuscicauda	2007–2019	9	0.065 ± 0.102	157.3%	0.017-0.337
			2021	2	0.031 ± 0.035	111.9%	0.007-0.056
Columbidae (Pigeons and Doves)	Ruddy Ground Dove	Columbina talpacoti	2021	1	0.001	—	_
	White-tipped Dove	Leptotila verreauxi	2007–2019	1	0.007	_	_
Corvidae (Crows, Jays, and Magpies)	Brown Jay	Psilorhinus morio	2007–2019	1	0.027	—	_
Fringillidae (Finches, Euphonias, and Allies)	Yellow-throat ed Euphonia	Euphonia hirundinacea	2007–2019	2	0.006 ± 0.002	37.0%	0.005-0.008
Furnariidae (Ovenbirds and Woodcreeper s)	Ivory-billed Woodcreeper	Xiphorhynchu s flavigaster	2021	1	0.156	_	_
	Olivaceous Woodcreeper	Sittasomus griseicapillus	2007–2019	2	0.112 ± 0.045	40.5%	0.08-0.144

	Plain Xenops	Xenops minutus	2007–2019	1	0.045	—	—
	Ruddy Woodcreeper	Dendrocincla homochroa	2007–2019	13	0.371 ± 0.122	32.9%	0.222-0.598
			2021	1	0.525	_	—
	Rufous-breast ed Spinetail	Synallaxis erythrothorax	2007–2019	1	0.045	_	_
			2021	3	0.066 ± 0.059	89.9%	0.01-0.128
	Streak-headed Woodcreeper	Lepidocolapte s souleyetii	2007–2019	2	0.145 ± 0.017	11.8%	0.133-0.157
	Tawny-winge d Woodcreeper	Dendrocincla anabatina	2007–2019	11	0.261 ± 0.176	67.4%	0.073–0.607
			2021	9	0.15 ± 0.053	35.3%	0.06-0.234
	Wedge-billed Woodcreeper	Glyphorynchu s spirurus	2007–2019	1	0.278	_	_
Galbulidae (Jacamars)	Rufous-tailed Jacamar	Galbula ruficauda	2021	1	0.063	—	—
Hirundinidae (Swallows)	Northern Rough-winge d Swallow	Stelgidopteryx serripennis	2007–2019	2	0.173 ± 0	0.1%	0.173–0.173
Icteridae (Troupials and Allies)	Baltimore Oriole	Icterus galbula	2007–2019	1	0.008	_	_
	Black-cowled Oriole	Icterus prosthemelas	2021	1	0.007	—	—
	Yellow-billed Cacique	Amblycercus holosericeus	2007–2019	3	0.112 ± 0.127	113.9%	0.032-0.259
			2021	4	0.028 ± 0.013	46.1%	0.016-0.045
Icteriidae (Yellow-breas ted Chat)	Yellow-breast ed Chat	Icteria virens	2007–2019	3	0.046 ± 0.065	142.3%	0.006-0.12
			2021	1	0.059	_	_
Mimidae (Mockingbir ds and Thrashers)	Gray Catbird	Dumetella carolinensis	2007–2019	9	0.022 ± 0.012	52.1%	0.012-0.048
Momotidae (Motmots)	Lesson's Motmot	Momotus lessonii	2021	1	0.036	—	_
Oxyruncidae (Sharpbill, Royal Flycatcher, and Allies)	Royal Flycatcher	Onychorhynch us coronatus	2007–2019	2	0.545 ± 0.164	30.2%	0.429–0.662

			2021	1	0.014	—	—
Parulidae (New World Warblers)	American Redstart	Setophaga ruticilla	2007–2019	4	0.263 ± 0.133	50.4%	0.101–0.414
	Black-and-wh ite Warbler	Mniotilta varia	2007–2019	4	0.085 ± 0.041	48.3%	0.033-0.13
			2021	6	0.09 ± 0.018	20.2%	0.07-0.115
	Common Yellowthroat	Geothlypis trichas	2007–2019	14	0.127 ± 0.091	71.3%	0.023–0.4
			2021	1	0.015	—	—
	Hooded Warbler	Setophaga citrina	2007–2019	14	0.601 ± 0.819	136.2%	0.047–2.659
			2021	12	0.153 ± 0.071	46.2%	0.067-0.288
	Kentucky Warbler	Geothlypis formosa	2007–2019	19	0.037 ± 0.017	46.1%	0.014-0.085
			2021	4	0.037 ± 0.012	31.9%	0.023-0.049
	Louisiana Waterthrush	Parkesia motacilla	2007–2019	2	0.399 ± 0.001	0.4%	0.398-0.4
			2021	6	0.297 ± 0.114	38.5%	0.131-0.468
	Magnolia Warbler	Setophaga magnolia	2007–2019	7	0.096 ± 0.055	57.6%	0.041-0.208
	Mourning Warbler	Geothlypis philadelphia	2021	1	0.028	_	—
	Northern Waterthrush	Parkesia noveboracensi s	2007–2019	36	0.305 ± 0.33	108.2%	0.047–1.804
			2021	6	0.166 ± 0.102	61.5%	0.041-0.339
	Ovenbird	Seiurus aurocapilla	2007–2019	7	0.093 ± 0.073	79.1%	0.021-0.202
			2021	5	0.094 ± 0.062	65.6%	0.045-0.201
	Prothonotary Warbler	Protonotaria citrea	2007–2019	6	0.609 ± 1.267	207.9%	0.043-3.195
			2021	5	0.185 ± 0.263	142.1%	0.04-0.654
	Swainson's Warbler	Limnothlypis swainsonii	2021	1	0.208	_	_
	Tennessee Warbler	Leiothlypis peregrina	2007–2019	1	0.022	_	_
	Worm-eating Warbler	Helmitheros vermivorum	2007–2019	2	0.022 ± 0.005	21.7%	0.019-0.025

			2021	3	0.054 ± 0.013	23.9%	0.044-0.068
	Yellow Warbler	Setophaga petechia	2007–2019	4	0.021 ± 0.008	39.4%	0.013-0.032
Passerellidae (New World Sparrows)	Green-backed Sparrow	Arremonops chloronotus	2007–2019	3	0.076 ± 0.041	53.9%	0.037–0.119
			2021	14	0.028 ± 0.025	90.7%	0.003-0.093
Picidae (Woodpecker s)	Yucatan Woodpecker	Melanerpes pygmaeus	2021	2	0.009 ± 0.004	47.5%	0.006-0.013
Pipridae (Manakins)	Red-capped Manakin	Ceratopipra mentalis	2007–2019	12	0.013 ± 0.005	38.3%	0.006-0.024
			2021	4	0.003 ± 0.001	27.5%	0.003-0.005
	White-collare d Manakin	Manacus candei	2007–2019	5	0.024 ± 0.032	134.1%	0.005-0.08
			2021	5	0.003 ± 0.001	45.7%	0.001-0.004
Polioptilidae (Gnatcatcher s)	Long-billed Gnatwren	Ramphocaenu s melanurus	2007–2019	3	0.077 ± 0.055	71.8%	0.04–0.141
			2021	1	0.016	_	—
Scolopacidae (Sandpipers and Allies)	Spotted Sandpiper	Actitis macularius	2021	1	0.741	_	_
Thamnophili dae (Typical Antbirds)	Barred Antshrike	Thamnophilus doliatus	2007–2019	1	0.167	—	_
			2021	2	0.032 ± 0.031	96.5%	0.01-0.054
	Dusky Antbird	Cercomacroid es tyrannina	2007–2019	8	0.046 ± 0.014	29.1%	0.026-0.059
			2021	2	0.054 ± 0.058	107.7%	0.013-0.095
	Great Antshrike	Taraba major	2021	1	0.09	—	—
Thraupidae (Tanagers and Allies)	Buff-throated Saltator	Saltator maximus	2007–2019	1	0.001	_	
	Gray-headed Tanager	Eucometis penicillata	2007–2019	15	0.251 ± 0.119	47.2%	0.101–0.509
			2021	9	0.154 ± 0.059	38.5%	0.083-0.281
	Morelet's Seedeater	Sporophila morelleti	2007–2019	15	0.017 ± 0.021	123.7%	0.006-0.091

	Thick-billed Seed-Finch	Sporophila funerea	2007–2019	1	0.007	—	_
Tityridae (Tityras and Allies)	Northern Schiffornis	Schiffornis veraepacis	2007–2019	1	0.003	_	_
			2021	1	0.002	_	_
	Rose-throated Becard	Pachyramphu s aglaiae	2007–2019	1	0.05	_	—
Troglodytida e (Wrens)	Spot-breasted Wren	Pheugopedius maculipectus	2007–2019	12	0.108 ± 0.055	51.5%	0.027–0.187
			2021	11	0.053 ± 0.081	152.9%	0.009-0.289
	White-bellied Wren	Uropsila leucogastra	2007–2019	2	0.224 ± 0.023	10.3%	0.208-0.24
			2021	2	0.074 ± 0.066	89.0%	0.028-0.121
	White-breaste d Wood-Wren	Henicorhina leucosticta	2007–2019	7	0.194 ± 0.316	163.2%	0.053–0.909
			2021	1	0.28	_	_
Turdidae (Thrushes and Allies)	Clay-colored Thrush	Turdus grayi	2021	13	0.021 ± 0.022	104.3%	0.005–0.079
	Swainson's Thrush	Catharus ustulatus	2021	5	0.004 ± 0.002	44.7%	0.002-0.007
	Veery	Catharus fuscescens	2021	1	0.025	_	_
	White-throate d Thrush	Turdus assimilis	2007–2019	1	0.038	—	—
	Wood Thrush	Hylocichla mustelina	2007–2019	3	0.084 ± 0.032	37.8%	0.054–0.117
Tyrannidae (Tyrant Flycatchers)	Acadian Flycatcher	Empidonax virescens	2007–2019	1	0.147	_	_
			2021	4	0.178 ± 0.036	20.0%	0.136-0.216
	Bright-rumpe d Attila	Attila spadiceus	2007–2019	1	0.107	_	_
			2021	2	0.051 ± 0.037	71.5%	0.025-0.077
	Dusky-capped Flycatcher	Myiarchus tuberculifer	2007–2019	1	0.031	_	_
			2021	2	0.039 ± 0	1.2%	0.038-0.039
	Eastern Wood-Pewee	Contopus virens	2021	1	0.484	—	—

	Eye-ringed Flatbill	Rhynchocyclu s brevirostris	2007–2019	2	0.066 ± 0.042	64.3%	0.036-0.096
	Great Kiskadee	Pitangus sulphuratus	2021	2	0.088 ± 0.001	0.9%	0.087–0.088
	Greenish Elaenia	Myiopagis viridicata	2007–2019	1	0.02	—	—
	Northern Bentbill	Oncostoma cinereigulare	2007–2019	2	0.107 ± 0.009	8.3%	0.1-0.113
			2021	3	0.044 ± 0.002	4.5%	0.041-0.045
	Ochre-bellied Flycatcher	Mionectes oleagineus	2007–2019	28	0.031 ± 0.05	162.8%	0.009–0.278
	Social Flycatcher	Myiozetetes similis	2007–2019	1	0.017	_	_
	Sulphur-bellie d Flycatcher	Myiodynastes luteiventris	2007–2019	2	0.057 ± 0.023	39.7%	0.041-0.073
	Tropical Kingbird	Tyrannus melancholicus	2007–2019	1	0.042	_	_
	Tropical Pewee	Contopus cinereus	2007–2019	3	0.174 ± 0.042	23.96%	0.126-0.203
	Yellow-bellied Elaenia	Elaenia flavogaster	2007–2019	3	0.007 ± 0.003	33.9%	0.005–0.01
	Yellow-bellied Flycatcher	Empidonax flaviventris	2007–2019	1	0.101	—	—
			2021	1	0.126	—	—
	Yellow-olive Flycatcher	Tolmomyias sulphurescens	2007–2019	1	0.066	_	_
Vireonidae (Vireos, Shrike-Babbl ers, and Erpornis)	Lesser Greenlet	Pachysylvia decurtata	2021	1	0.084	_	_
	Mangrove Vireo	Vireo pallens	2007–2019	7	0.173 ± 0.107	61.7%	0.073-0.315
			2021	1	0.019	—	—
	Red-eyed Vireo	Vireo olivaceus	2007–2019	2	0.025 ± 0.0	0.0%	0.025-0.025
	White-eyed Vireo	Vireo griseus	2007–2019	3	0.057 ± 0.038	66.8%	0.018-0.093
	Yellow-green Vireo	Vireo flavoviridis	2007–2019	13	0.02 ± 0.008	40.3%	0.009–0.035
			2021	1	0.007	_	_

Appendix 3. Summary of 75 abundant, widespread species with relatively high trophic positions that could be useful sentinels for assessing avian MeHg exposure in various Neotropical habitats. An asterisks (*) indicates that other members within this group may also be useful. Relative abundance was evaluated by visually inspecting mist-netting capture data and country-level eBird Bar Charts (<u>https://ebird.org/GuideMe?cmd=changeLocation</u>). The exclusion of a family or species from this list does not necessarily signify that those taxa would be poor MeHg bioindicators, but that sample acquisition could be challenging. Focal species selection for a given research effort should ultimately be informed by their abundance at the intended sampling locations, their diet and trophic niche, as well as the geographic scale of interest. Species are arranged alphabetically by order and family. Species highlighted in green may be especially useful due to their widespread range.

Order	Family	Common name	Latin name	Trophic niche	Migratory status	Primary habitat(s)	Region(s) occupied
Caprimulgifo rmes	Caprimulgid ae (Nightjars and Allies) *	Common Pauraque	Nyctidromus albicollis	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest; tropical deciduous forest	Texas, USA to Argentina
	Trochilidae (Hummingbi rds) *	Rufous-tailed Hummingbird	Amazilia tzacatl	Nectarivore	Resident	Tropical lowland evergreen forest; secondary forest	Mexico to Ecuador
		White-necked Jacobin	Florisuga mellivora	Nectarivore	Resident	Tropical lowland evergreen forest; secondary forest	Mexico to Bolivia
	(Sandpipers and Allies) *	Spotted Sandpiper	Actitis macularius	Aquatic predator	Full migrant	Riverine sand beaches; freshwater lakes and ponds	Canada to Argentina; West Indies
Coraciiforme s *	Alcedinidae (Kingfishers) *	American Pygmy Kingfisher	Chloroceryle aenea	Aquatic predator	Resident	Streams; freshwater lakes and ponds	Mexico to Paraguay
		Green Kingfisher	Chloroceryle americana	Aquatic predator	Resident	Streams; freshwater lakes and ponds	Texas, USA to Argentina
	Momotidae (Motmots) *	Lesson's Motmot	Momotus lessonii	Omnivore	Resident	Tropical lowland evergreen forest; montane evergreen forest; secondary	Mexico to Panama

						forest	
Cuculiformes *	Cuculidae (Cuckoos) *	Groove-billed Ani	Crotophaga sulcirostris	Invertivore	Resident	Second-growt h scrub; riparian thickets	Texas, USA to Peru
		Squirrel Cuckoo	Piaya cayana	Invertivore	Resident	Tropical lowland evergreen forest; tropical deciduous forest; secondary forest	Mexico to Uruguay
Galbuliforme s	Galbulidae (Jacamars) *	Rufous-tailed Jacamar	Galbula ruficauda	Invertivore	Resident	Tropical lowland evergreen forest; gallery forest	Mexico to Brazil
Passeriforme s	Cardinalidae (Cardinals and Allies) *	Hepatic Tanager	Piranga flava	Invertivore	Resident	Pine-oak forest; gallery forest; tropical deciduous forest	Colorado, USA to Argentina
		Red-crowned Ant-Tanager	Habia rubica	Invertivore	Resident	Tropical lowland evergreen forest	Mexico to Brazil
		Red-throated Ant-Tanager	Habia fuscicauda	Invertivore	Resident	Tropical lowland evergreen forest; flooded tropical evergreen forest	Mexico to Colombia
		Summer Tanager	Piranga rubra	Invertivore	Partial migrant	Gallery forest	Iowa, USA to Bolivia; West Indies
	Formicariida e (Antthrushes)*	Mayan Antthrush	Formicarius moniliger	Invertivore	Resident	Tropical lowland evergreen forest; flooded tropical evergreen forest	Mexico to Honduras
	Furnariidae (Ovenbirds and Woodcreeper s) *	Ivory-billed Woodcreeper	Xiphorhynchu s flavigaster	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest; tropical deciduous forest	Mexico to Costa Rica
		Olivaceous Woodcreeper	Sittasomus griseicapillus	Invertivore	Resident	Tropical lowland evergreen	Mexico to Uruguay

					forest; montane evergreen forest; tropical deciduous forest	
	Plain Xenops	Xenops minutus	Invertivore	Resident	Tropical lowland evergreen forest; flooded tropical evergreen forest	Mexico to Brazil
	Ruddy Woodcreeper	Dendrocincla homochroa	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest; tropical deciduous forest	Mexico to Venezuela
	Tawny-winge d Woodcreeper	Dendrocincla anabatina	Invertivore	Resident	Tropical lowland evergreen forest	Mexico to Panama
	Wedge-billed Woodcreeper	Glyphorynchu s spirurus	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest	Mexico to Brazil
Hirundinidae (Swallows) *	Barn Swallow	Hirundo rustica	Invertivore	Partial migrant	Pastures/agric ultural lands; Northern temperate grassland	Worldwide
	Gray-breasted Martin	Progne chalybea	Invertivore	Partial migrant	Second-growt h scrub; pastures/agric ultural lands	Mexico to Argentina
	Northern Rough-winge d Swallow	Stelgidopteryx serripennis	Invertivore	Partial migrant	Second-growt h scrub; pastures/agric ultural lands	Canada to Panama; West Indies
Oxyruncidae (Sharpbill, Royal Flycatcher, and Allies) *	Royal Flycatcher	Onychorhynch us coronatus	Invertivore	Resident	Tropical lowland evergreen forest	Mexico to Brazil
Parulidae (New World Warblers) *	American Redstart	Setophaga ruticilla	Invertivore	Full migrant	Tropical lowland evergreen forest; montane evergreen forest	Canada to Peru; West Indies

	Black-and-wh ite Warbler	Mniotilta varia	Invertivore	Full migrant	Tropical lowland evergreen forest; montane evergreen forest	Canada to Ecuador; West Indies
	Common Yellowthroat	Geothlypis trichas	Invertivore	Partial migrant	Freshwater/sal twater/brackis h marshes	Canada to Panama; West Indies
	Golden-crown ed Warbler	Basileuterus culicivorus	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest	Mexico to Argentina
	Gray-crowned Yellowthroat	Geothlypis poliocephala	Invertivore	Resident	Second-growt h scrub; riparian thickets	Mexico to Panama
	Hooded Warbler	Setophaga citrina	Invertivore	Full migrant	Tropical lowland evergreen forest; secondary forest	Canada to Venezuela; West Indies
	Northern Waterthrush	Parkesia noveboracensi s	Invertivore	Full migrant	Tropical lowland evergreen forest; secondary forest	Alaska, USA to Ecuador; West Indies
	Yellow Warbler	Setophaga petechia	Invertivore	Partial migrant	Gallery forest; secondary forest; mangrove forest	Alaska, USA to Peru; West Indies
Passerellidae (New World Sparrows) *	Green-backed Sparrow	Arremonops chloronotus	Omnivore	Resident	Tropical lowland evergreen forest; tropical deciduous forest	Mexico to Honduras
	Orange-billed Sparrow	Arremon aurantiirostris	Omnivore	Resident	Tropical lowland evergreen forest	Mexico to Peru
Polioptilidae (Gnatcatcher s) *	Blue-gray Gnatcatcher	Polioptila caerulea	Invertivore	Partial migrant	Tropical deciduous forest; tropical lowland evergreen forest	Canada to Honduras; West Indies
	Tropical Gnatcatcher	Polioptila plumbea	Invertivore	Resident	Tropical deciduous	Mexico to Brazil

					forest; tropical lowland evergreen forest; Arid lowland/mont ane scrub	
Thamnophili dae (Typical Antbirds) *	Barred Antshrike	Thamnophilus doliatus	Invertivore	Resident	Second-growt h scrub; riparian thickets; river island scrub	Mexico to Argentina
	Dot-winged Antwren	Microrhopias quixensis	Invertivore	Resident	Tropical lowland evergreen forest	Mexico to Brazil
	Dusky Antbird	Cercomacroid es tyrannina	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest	Mexico to Brazil
	Great Antshrike	Taraba major	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest; riparian thickets	Mexico to Argentina
Thraupidae (Tanagers and Allies) *	Gray-headed Tanager	Eucometis penicillata	Invertivore	Resident	Tropical lowland evergreen forest; gallery forest; secondary forest	Mexico to Paraguay
Troglodytida e (Wrens) *	Gray-breasted Wood-Wren	Henicorhina leucophrys	Invertivore	Resident	Montane evergreen forest	Mexico to Bolivia
	House Wren	Troglodytes aedon	Invertivore	Resident	Second-growt h scrub; arid lowland/mont ane scrub	Canada to Chile
	Spot-breasted Wren	Pheugopedius maculipectus	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest	Mexico to Costa Rica
	White-breaste d Wood-Wren	Henicorhina leucosticta	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest	Mexico to Peru

Turdidae (Thrushes and Allies) *	Clay-colored Thrush	Turdus grayi	Omnivore	Resident	Tropical lowland evergreen forest; tropical deciduous forest; secondary forest	Texas, USA to Colombia
	Swainson's Thrush	Catharus ustulatus	Invertivore	Full migrant	Montane evergreen forest; tropical lowland evergreen forest	Alaska, USA to Argentina
	Wood Thrush	Hylocichla mustelina	Invertivore	Full migrant	Tropical lowland evergreen forest; secondary forest	Canada to Colombia
Tyrannidae (Tyrant Flycatchers) *	Boat-billed Flycatcher	Megarynchus pitangua	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest	Mexico to Argentina
	Bright-rumpe d Attila	Attila spadiceus	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest; montane evergreen forest	Mexico to Bolivia
	Common Tody-Flycatch er	Todirostrum cinereum	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest; tropical deciduous forest	Mexico to Brazil
	Dusky-capped Flycatcher	Myiarchus tuberculifer	Invertivore	Resident	Montane evergreen forest; tropical lowland evergreen forest; tropical deciduous forest	Arizona, USA to Argentina
	Eastern Wood-Pewee	Contopus virens	Invertivore	Full migrant	Tropical lowland evergreen forest; secondary forest	Canada to Peru; West Indies

	Great Kiskadee	Pitangus sulphuratus	Omnivore	Resident	Secondary forest; riparian thickets	Texas, USA to Argentina
	Sepia-capped Flycatcher	Leptopogon amaurocephal us	Invertivore	Resident	Tropical lowland evergreen forest; secondary forest	Mexico to Brazil
	Social Flycatcher	Myiozetetes similis	Invertivore	Resident	Tropical lowland evergreen forest; tropical deciduous forest	Mexico to Argentina
	Tropical Kingbird	Tyrannus melancholicus	Invertivore	Resident	Secondary forest; gallery forest; river-edge forest	Arizona, USA to Argentina
	Tropical Pewee	Contopus cinereus	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest	Mexico to Argentina
	Yellow-bellied Elaenia	Elaenia flavogaster	Invertivore	Resident	Second-growt h scrub; riparian thickets	Mexico to Brazil
	Yellow-olive Flycatcher	Tolmomyias sulphurescens	Invertivore	Resident	Tropical lowland evergreen forest; montane evergreen forest; tropical deciduous forest	Mexico to Uruguay
Vireonidae (Vireos, Shrike-Babbl ers, and Erpornis) *	Lesser Greenlet	Pachysylvia decurtata	Invertivore	Resident	Tropical lowland evergreen forest; tropical deciduous forest	Mexico to Ecuador
	Mangrove Vireo	Vireo pallens	Invertivore	Resident	Tropical deciduous forest; mangrove forest	Mexico to Costa Rica
	Red-eyed Vireo	Vireo olivaceus	Invertivore	Full migrant	Tropical lowland evergreen forest; secondary forest	Canada to Bolivia

		Rufous-browe d Peppershrike	Cyclarhis gujanensis	Invertivore	Resident	Tropical lowland evergreen forest; gallery forest	Mexico to Argentina
		Tawny-crown ed Greenlet	Tunchiornis ochraceiceps	Invertivore	Resident	Tropical lowland evergreen forest	Mexico to Bolivia
Pelecaniform es	Ardeidae (Herons, Egrets, and Bitterns) *	Black-crowne d Night-Heron	Nycticorax nycticorax	Aquatic predator	Partial migrant	Freshwater/sal twater/brackis h marshes; freshwater lakes and ponds; rivers	Worldwide
		Great Egret	Ardea alba	Aquatic predator	Partial migrant	Freshwater/sal twater/brackis h marshes; coastal sand beaches/mudfl ats	Worldwide
		Green Heron	Butorides virescens	Aquatic predator	Partial migrant	Freshwater lakes, ponds, and marshes	United States to Ecuador; West Indies
	Pelecanidae (Pelicans) *	Brown Pelican	Pelecanus occidentalis	Aquatic predator	Partial migrant	Coastal waters	United States to Peru; West Indies
Podicipedifor mes *	Podicipedida e (Grebes) *	Least Grebe	Tachybaptus dominicus	Aquatic predator	Resident	Freshwater marshes, lakes, and ponds	Texas, USA to Uruguay
		Pied-billed Grebe	Podilymbus podiceps	Aquatic predator	Resident	Freshwater lakes, ponds, and marshes	Canada to Argentina; West Indies
Suliformes	Anhingidae (Anhingas)	Anhinga	Anhinga anhinga	Aquatic predator	Resident	Freshwater lakes and ponds; rivers	United States to Uruguay
	Fregatidae (Frigatebirds)	Magnificent Frigatebird	Fregata magnificens	Aquatic predator	Resident	Coastal waters; pelagic waters; mangrove forest	United States to Uruguay; Cape Verde
	Phalacrocora cidae (Cormorants and Shags) *	Neotropic Cormorant	Phalacrocora x brasilianus	Aquatic predator	Resident	Coastal waters; freshwater lakes and ponds; rivers	Texas, USA to Chile; Cuba
	Sulidae (Boobies and Gannets) *	Brown Booby	Sula leucogaster	Aquatic predator	Resident	Coastal waters; pelagic waters	Worldwide