
# Common Loon Status Report 2024 MASSACHUSETTS





A Series Publication of BRI's Center for Waterbird Studies



# Status of the Breeding Loon Population in Massachusetts

The loon is a key biosentinel of aquatic integrity for lakes and nearshore marine ecosystems across North America. Initially supported by a grant from the Ricketts Conservation Foundation, Biodiversity Research Institute (BRI) continues the largest restoration effort for the Common Loon.

This important work establishes new breeding populations of Common Loons in southern and western Massachusetts through our *Restore the Call: New England* effort. State working groups and associated conservation plans have been developed in partnership with the Massachusetts Department of Conservation and Recreation, Massachusetts Division of Fisheries and Wildlife, and the U.S. Fish and Wildlife Service.

As a result of human activities such as sport hunting and shoreline development, breeding loons in Massachusetts were extirpated in the early 20th century (Forbush 1925). By the time the Federal Migratory Bird Treaty Act of 1918 was enacted, Common Loons (*Gavia immer*) had already disappeared from the state. In 1975, a nesting pair was discovered on Quabbin Reservoir (Clark 1975; Blodgett and Lyons 1988). However, recolonization is slow for Common Loons—breeding populations take a decade to double (Figure 1). They are

currently designated as a Species of Special Concern in Massachusetts.

#### Distribution and Movements

In New England, nearly 2,000 territorial pairs of Common Loons currently breed in Maine, New Hampshire, and Vermont (Paruk et al. 2020). In Massachusetts, a peripheral breeding population exists (Figure 2) and is recovering in the state. Since 1985, this population has increased nearly seven-fold; by 2023,

Long-term monitoring provides valuable information about reproductive success, habitat utilization, and behavioral ecology.

56 territorial pairs were found on 32 lakes (Figure 1). While the population has increased, overall productivity—chicks surviving per territorial pair (CS/TP)—has slowed since the late 1990s.

In 15 of the last 22 years, the productivity rates in Massachusetts have been below sustainable levels (0.48 CS/TP; Figure 3).

The carrying capacity for Massachusetts is estimated to be about 300 pairs based on lake area, depth, and phosphorus concentrations (Spagnuolo 2012). Therefore, a larger breeding population is feasible.

Loons banded in New England and New York during the breeding season have been observed on wintering areas ranging from Canada to Florida. Coastal Maine (36%) and Massachusetts (36%) accounted for 72% of all wintering areas. This was followed by the mid-Atlantic (10%), southern New England (8%), Long Island, New York (6%), and coastal New Hampshire (4%).

Continued banding is needed to better understand seasonal movements (since 1999, 200 loons have been banded).

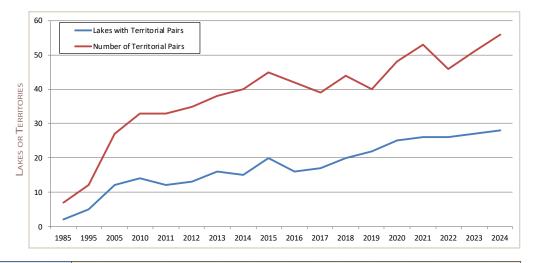



Figure 1. Number of lakes and territories occupied by loons in Massachusetts.

|                                 | Decades |      |      | Annual |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------------|---------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                                 | 1975    | 1985 | 1995 | 2005   | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| Lakes with<br>Territorial Pairs | 1       | 2    | 5    | 12     | 14   | 12   | 13   | 16   | 15   | 20   | 16   | 17   | 20   | 22   | 25   | 26   | 26   | 27   | 32   |
| Number of<br>Territorial Pairs  | 1       | 7    | 12   | 27     | 33   | 33   | 35   | 37   | 40   | 45   | 42   | 39   | 45   | 40   | 48   | 53   | 46   | 51   | 56   |



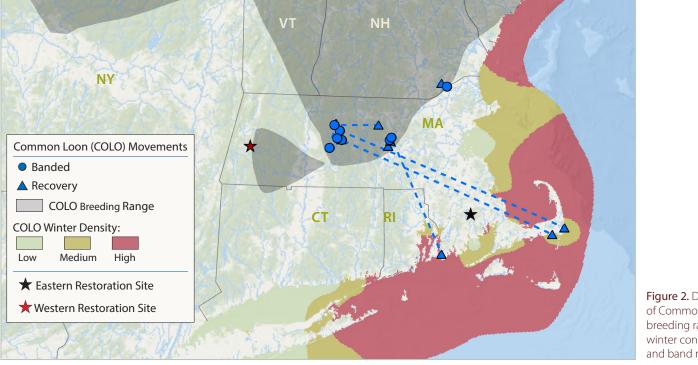
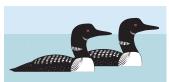




Figure 2. Distribution of Common Loon breeding range, winter concentration, and band recovery.

## Summary of Statewide Banding Effort for Breeding Adults



206 Number of Loons Banded (1999-2023)

56 Total Number of Breeding Pairs

112
Total Number of Adults

**50%**Percent of Breeding
Population Banded

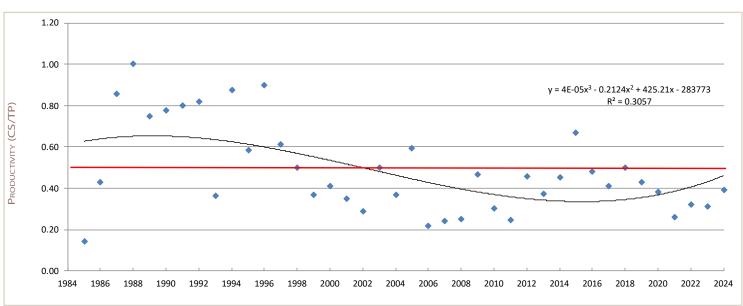



Figure 3. Overall productivity of Common Loons. Red line depicts the number of CS/TP needed to sustain a breeding population.



# The Concern for Loons in Massachusetts

#### Mercury's Impact in the Environment

Humans and wildlife are exposed to mercury pollution mainly through the consumption of contaminated fish and other aquatic organisms. Wildlife directly linked to aquatic ecosystems have an increased exposure risk to mercury compared to species living independent of aquatic food webs because the conversion of mercury to methylmercury is enhanced in wet soils that are low in oxygen (Figure 4).

Mercury, when ingested, can have a wide range of effects on an animal. Survival, reproduction, immune response, song, and endocrine function are all aspects of avian ecology that may be adversely affected by elevated blood mercury levels (Evers et al. 2018), especially in loons (Burgess and Meyer 2008; Evers et al. 2008, 2011).



High mercury levels in loons are most common in four scenarios: 1) where water chemistry is sensitive to mercury input; 2) when summertime lake level fluctuations are greater than six feet; 3) where large mercury point sources exist; and 4) where shoreline wetlands are common.

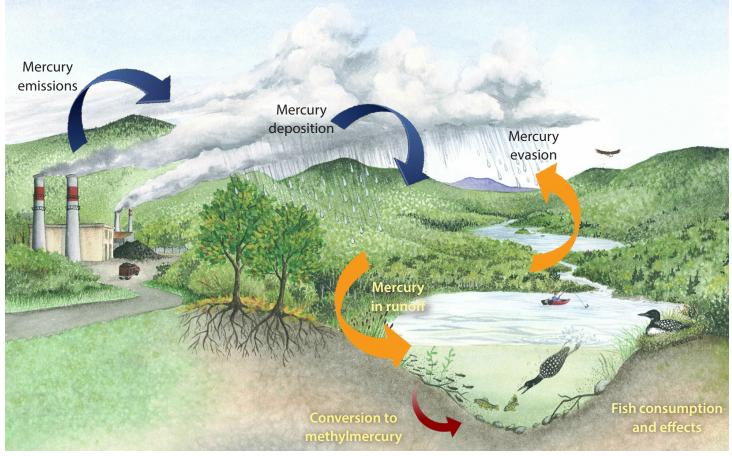



Figure 4. This simple version of the mercury cycle illustrates how mercury enters and moves through an ecosystem. Sources of mercury in Massachusetts are varied. Coal-fired power plants (particularly those in the Ohio River Valley) are a major source of air emissions. Recent reductions in air emissions from incinerators have proven effective in rapidly reducing mercury in loons and fish (Evers et al. 2007). Water-borne sources are still not fully known.



### Loons Help Us Monitor Mercury in the Environment

Recent levels of available methylmercury in aquatic ecosystems in the Northeast pose significant risks to human and ecological health.

Loons—large, long-lived birds that feed exclusively on fish—generally bioaccumulate more mercury than other bird species. Loons are therefore widely recognized as the key avian indicator for lakes in North America (Evers 2006).

Continental trends in mercury pollution indicate a significant increasing gradient—west to east with the highest blood and egg mercury levels in the Northeast (Evers et al. 1998). As such, this region contains **biological mercury hotspots**. Northcentral Massachusetts is one area of concern. Blood samples from 141 adults taken between 1999 and 2023 ranged from 2.30 +/- 1.20 (ppm, wet weight [ww]; BRI Unpubl. Data).

Extensive research across North America has determined male loons contain higher mercury concentrations than females from the same lake. This difference in mercury concentrations is due to male loons being larger than females, and therefore targeting larger fish prey. A formula has been developed to standardize adult loon blood mercury concentrations to a single comparable unit, the female loon unit (FLU; Evers et al. 2011).

# Mercury Exposure and Risk for Breeding Population in Massachusetts



400

Total Number of Samples

**27** 

Number of Years Sampled (1998-2024)

**52%** 

Percent Above Reproductive Harm (>1.5 ppm)

#### Mercury and Air Toxic Standards

In April 2015, the US EPA Mercury and Air Toxics Standards rule went into effect. The rule limits emissions of toxic air pollutants, including mercury and other heavy metals. The requirement, as of 2017, was for industry standards to meet a 91% reduction of mercury emissions.

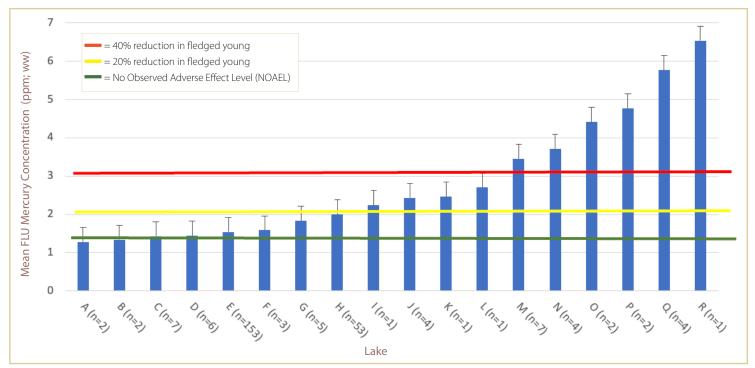



Figure 5. Mean blood and egg concentrations (FLU's) in Common Loons sampled on Massachusetts waterbodies (1998-2023; n=258)

# Marine Oil Spills: Applying Successful Approaches

### Bouchard Barge 120 Oil Spill - April 2003

The Bouchard Barge 120 ran aground near Cape Cod Canal during migration of several bird species including the Common Loon. Approximately 200 dead or moribund loons were collected and a rapid field assessment was coordinated by the U.S. Fish and Wildlife Service (USFWS) through the Loon Preservation Committee (LPC) and BRI to document the range and fate of dispersing individuals (Taylor et al. 2004).

### Oil Fingerprinting

Dispersed loons with oiled plumage were identified in Maine, Massachusetts, and New Hampshire. A total of five loons were observed with oil in Maine and New Hampshire. One of these loons was identified by its color bands and found on its traditional breeding territory in central New Hampshire.

Another loon captured in New Hampshire was tested and found to have been contaminated by the B120 oil spill. This finding and other observations documented that the "footprint" of impact was greater than the immediate Buzzards Bay area. Pre- and post-spill data from monitored breeding loon populations in the Northeast helped identify further potential impacts to reproductive success.



Oil leaking from the barge washed ashore for more than two weeks, impacting a variety of natural resources across more than 90 miles of shoreline.

#### **Proven Restoration Strategies**

In a precedent-setting 10-year restoration effort for the North Cape Oil Spill in Rhode Island, BRI worked with the USFWS to identify and purchase the best lake shoreline properties for mitigation. We then monitored the protected loon pairs on a weekly basis for two to six years. This long-term approach was successful in replacing the 4,400 loon years lost (adult loons that died from the spill as well as their lost future progeny) through the long-term protection of 75 nesting pairs (Evers et. al 2019). This strategy is being considered for the B120 spill.

#### Comparison of Impacts and Loon Restoration for Two Relevant Oil Spills: North Cape in RI and Buzzard's Bay, MA (B120)

Number of Loon Years Lost

4,400 North Cape

**4,200**B120

Nests Needed to Recover Loss

70 North Cape

**65** B120

Nests Successfully Recovered

> 75 North Cape

TBD\*

\*TBD-the number of nests successfully recovered will depend on demographic information collected between 2020-2025.



A stranded loon unable to fly as a result of an oil spill. Photo courtesy NOAA.

## **Loon Translocation**

In 2013, BRI began one of the largest loon studies ever conducted. The initial five-year scientific initiative aimed to strengthen and restore Common Loon populations within their existing and former range. This project was the first translocation study to be conducted for a loon species.

During the course of this *Restore the Call* project, BRI staff developed the methods for captive rearing loon chicks in aquatic pens. Details of the project are found in this BRI publication, *Loon Translocation:* A Summary of Methods and Strategies for the Translocation of Common Loons

A copy can be downloaded at: www.briwildlife.org/

translocation



# **Translocation Results**

As of 2024, among the 36 loons that have been translocated to southeastern Massachusetts during 2015-2017 and 2020, a total of 19 adult loons have been resighted (53%). Of those, 12 first returned to the lakes in Massachusetts to which they were translocated and captive-reared, and then from which they fledged. Additionally, six individuals were reobserved in New Hampshire and one in New York. The table below details our field efforts and results during the 2015-2017 and 2020 seasons. This table excludes the 46 loon chicks translocated during the 2021-2024 seasons, which are not expected to return for at least three years after their release.

**Table 1.** List of loon chicks translocated to the APC during 2015-2017 and 2020 (Methods: CR=captive reared; DR=direct release.

| Release | Band #     | Color               | Band Combo                  | Source | C   | No altra d | Date     |  |
|---------|------------|---------------------|-----------------------------|--------|-----|------------|----------|--|
| Year    | Band #     | Left Leg            | Right Leg                   | State  | Sex | Method     | Returned |  |
| 2015    | 1118-15210 | silver              | blue vertical stripe        | NY     | М   | CR         | 2018     |  |
| 2015    | 1118-15202 | silver              | red 2/blue 2                | NY     | М   | CR         |          |  |
| 2015    | 1118-15208 | silver              | green 3/blue 3              | NY     | М   | CR         | 2020     |  |
| 2015*   | 1118-15977 | silver              | orange 4/blue 4             | NY     | М   | CR         | 2019     |  |
| 2015    | 1118-15203 | silver              | white 5/blue 5              | NY     | М   | CR         | 2019     |  |
| 2015    | 1118-15201 | silver              | yellow 6/blue 6             | NY     | М   | CR         |          |  |
| 2015    | 1118-15204 | silver              | blue 7/blue 7               | NY     | М   | DR         |          |  |
| 2016    | 1118-15838 | green dot/silver    | white/red dot               | NY     | F   | CR         |          |  |
| 2016    | 0938-78833 | green dot/silver    | red/red                     | NY     | М   | CR         |          |  |
| 2016    | 1118-15836 | green dot/silver    | blue/orange                 | NY     | М   | CR         | 2023     |  |
| 2016*   | 0938-44493 | green dot/silver    | green stripe/green          | ME     | F   | CR         | 2018     |  |
| 2016    | 0938-78835 | green dot/silver    | orange stripe/white         | ME     | М   | CR         |          |  |
| 2016    | 1118-15832 | green dot/silver    | white/white                 | ME     | М   | CR         | 2018     |  |
| 2016*   | 0938-53072 | green dot/silver    | yellow stripe/yellow        | ME     | М   | DR         | 2017     |  |
| 2016    | 0938-78827 | green dot/silver    | yellow dot/green stripe     | ME     | М   | DR         | 2020     |  |
| 2016    | 1118-15837 | green dot/silver    | yellow/ blue                | NY     | F   | DR         |          |  |
| 2017    | 0938-44489 | red/silver          | green/yellow dot            | ME     | М   | CR         | 2020     |  |
| 2017    | 0938-44486 | red/silver          | yellow/blue dot             | ME     | F   | CR         | 2020     |  |
| 2017    | 0938-61745 | red/silver          | green/white stripe          | ME     | М   | CR         | 2021     |  |
| 2017    | 0938-03365 | red/silver          | orange dot/red              | ME     | М   | DR         |          |  |
| 2017    | 0938-44351 | red/silver          | blue/red                    | ME     | М   | DR         |          |  |
| 2017    | 0938-03364 | red/silver          | orange/blue                 | ME     | F   | DR         | 2022     |  |
| 2017    | 0669-21906 | white stripe/silver | orange stripe/red stripe    | ME     | М   | DR         | 2022     |  |
| 2017    | 0938-61725 | white stripe/silver | yellow stripe/orange stripe | ME     | F   | DR         |          |  |
| 2020    | 1238-04767 | yellow/silver       | orange dot/yellow           | ME     | F   | CR         |          |  |
| 2020    | 1238-04766 | yellow/silver       | white dot/red               | ME     | F   | CR         | 2023     |  |
| 2020    | 1238-04768 | yellow/silver       | blue dot/green              | ME     | М   | CR         |          |  |
| 2020    | 1238-04705 | yellow/silver       | oraange stripe/red          | ME     | М   | DR         |          |  |
| 2020    | 1238-04770 | silver/yellow       | green stripe/orange stripe  | ME     | М   | DR         | 2024     |  |
| 2020    | 1238-04760 | yellow/silver       | orange/blue                 | ME     | F   | DR         | 2023     |  |
| 2020    | 0689-09456 | yellow/silver       | red stripe/yellow           | ME     | F   | CR         |          |  |
| 2020    | 0689-09460 | silver/yellow       | red/orange                  | ME     | F   | CR         | 2023     |  |
| 2020    | 0689-09474 | yellow/silver       | red/green stripe            | ME     | М   | DR         |          |  |
| 2020    | 1118-16209 | silver/yellow       | orange/blue                 | ME     | F   | CR         |          |  |
| 2020    | 0689-09478 | yellow/silver       | orange stripe/blue stripe   | ME     | М   | DR         |          |  |
| 2020    | 1238-04765 | silver/yellow       | yellow/orange               | ME     | F   | CR         | 2023     |  |

<sup>\*</sup>Translocated loons that have successfully produced chicks.



#### **Bibliography**

Blodget, B.G. and P.J. Lyons. 1988. The recolonization of Massachusetts by the Common Loon (Gavia immer). Pp.177-184 in P.I.V. Strong, d. Papers from the 1987 conference on loon research and management. North Am. Loon Fund, Meredith, NH. 213pp.

Burgess, N.M. and M.W. Meyer. 2008. Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology 17:83–91.

Clark, R.A. 1975. Common Loons nest again in Massachusetts—Bird News of Western Mass. Evers, D.C., C.E. Gray, K.M. Taylor, and M. Sperduto. 2019. Restoration of Common Loons following the North Cape Oil Spill, Rhode Island. Science of the Total Environment 695:133849

Evers, D.C. 2018. The Effects of Methylmercury on Wildlife: A Comprehensive Review and Approach for Interpretation, Editor(s): D.A. Dellasala and M. I. Goldstein, In Encyclopedia of the Anthropocene. Elsevier 181-194. ISBN 9780128135761, https://doi.org/10.1016/B978-0-12-809665-9.09985-7.(http://www.sciencedirect.com/science/article/pii/B9780128096659099857)

Evers, D.C., K.A. Williams, M.W. Meyer, A.M. Scheuhammer, N. Schoch, A.T. Gilbert, L. Siegel, R.J. Taylor, R. Poppenga, C.R. Perkins. 2011. Spatial gradients of methylmercury for breeding common loons in the Laurentian Great Lakes region. Ecotoxicology. 20:1609-1625.

Evers, D.C, L.J. Savoy, and C.R. DeSorbo. 2008. Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81.

Evers, D.C., Y.J. Han, C.T. Driscoll, N.C. Kamman, M.W. Goodale, K.F. Lambert, T.M. Holsen, C.Y. Chen, T.A. Clair, and T. Butler. 2007. Identification and Evaluation of Biological Hotspots of Mercury in the Northeastern U.S. and Eastern Canada. Bioscience 57:29-43.

Evers, D.C. 2006. Loons as biosentinels of aquatic integrity. Environ. Bioindicators. 1:18-21. Forbush, E.H. 1925. Birds of Massachusetts and Other New England States. Massachusetts Department of Agriculture. Vol 1. 481 pp.

Hall, D.A. 2003. Report of Investigation of Quantity of Oil Spilled from the Barge B120 at Buzzards Bay April 2003. Independent Maritime Consulting Ltd., Wallingford, Pennsylvania. Prepared for the Bouchard Transportation Company, Inc., Melville, New York. June 14, 2003.

Kneeland, MR, VA Spagnuolo, DC Evers, JD Paruk, N Schoch, MA Pokras, G Stout, A Dalton, K Silber and LJ Savoy. 2020. A novel method for captive rearing of common loons and survival rates three years post-release. Zoo Biology DOI: 10.1002/zoo.21544.

Savoy, L.. 2023. Contaminants in Massachusetts' Breeding Common Loon Population: Summary Report 2022. Report #2023-10. Biodiversity Research Institute, Portland, Maine.

Spagnuolo, V. 2012. A landscape assessment of habitat and population recovery of Common Loons (*Gavia immer*) in Massachusetts, USA (Unpublished master's thesis), Harvard University.

Taylor, K., Evers, D.C., and T. Daigle. 2004. Common Loon injury rapid assessment from the Bouchard Barge No. 120 (Buzzards Bay) oil spill. Report BRI 2004-03. Biodiversity Research Institute, Falmouth, ME. Submitted to U.S. Fish Wildl. Serv., Concord, NH.

#### Suggested Citation for this Report

Evers, D. C., L. Savoy, and K. Taylor. 2024. Restore the Call: Massachusetts Status Report for the Common Loon. Biodiversity Research Institute, Portland, Maine. Science Communications Series BRI 2024-22. 8 pages.

#### Funding

Funding for this project was initially provided by the Ricketts Conservation Foundation, the Massachusetts Department of Conservation and Recreation, and the Massachusetts Division of Fisheries and Wildlife (MassWildlife).

#### Acknowledgments

BRI wishes to acknowledge: Dan Clark, Kiana Koenen, Ken MacKenzie, Halie Parker, Jillian Whitney, and Tom Skala of the Massachusetts Department of Conservation and Recreation; Erik Amati, Nathan Buckhout, Bill Davis, Tom French, Andrew Madden, Bridgett McAlice, Carolyn Mostello, and Andrew Vitz of MassWildlife for their field survey efforts and insights about Massachusetts' loon population; Andrea Anderson, Jay Toppan, and Nancy Yeatts from the APC; Brian Brock and our volunteer survey team on the APC translocation site; and the town water managers of Concord, Fitchburg, Lakeville, Leominster, Pittsfield, New Bedford, Taunton, and Worcester for permitting access to survey reservoirs and breeding loons.

Special thank you to Mike Labossiere from Fall River, Massachusetts and Bob Benlin from the Dalton Fire District. Thank you to Tristan Burgess, Carolyn Hurwitz, Priya Patel, and Zak Mertz for their expertise and assistance with veterinary care.

#### Credits

Maps: Mark Burton. Illustrations: p 4: Mercury Cycle by Shearon Murphy; Loon illustrations by lain Stenhouse. Photography: Cover: Loon feeding chick © Daniel Poleschook. pp 2-3: Loon nesting © Daniel Poleschook. p. 4: juvenile loon © Daniel Poleschook. pp: 4-5 Loon with chick © Daniel Poleschook. p 6: Oiled Common Loon on beach and Bouchard Barge 120 courtesy NOAA. p. 7: Translocation photos © BRI-Michelle Kneeland.

December 2024